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Vll 

FOREWORD 

The Nankai Mathematical Institute, whose grand new premises were in
augurated on the occasion of the 23rd conference on Differential Geometric 
Methods in Theoretical Physics, is the creation of the great Chinese math
ematician Shing-Shen Chern. Unfortunately he did not live long enough to 
attend the conference, but his spirit was present throughout. 

Chern recognized many years ago the need for China to have its own 
centre for advanced mathematical research, a centre modelled on the Insti
tute for Advanced Study at Princeton where Chern first went and on the 
Berkeley Institute (MSRI) which he later helped to establish. By his per
sonal example and tireless efforts the Nankai Institute came into being and 
is well placed to play a leading role in the new China of the 21st century. 

The 2005 conference will no doubt be just the first of many subsequent 
meetings at Nankai which will strengthen the international links between 
Chinese mathematicians and their colleagues in other countries. 

I first met Chern in 1956, when I was a fresh Ph.D. on my first visit 
to the United States. He was very friendly and helpful and our associa
tion continued over subsequent years. When I was President of the London 
Mathematical Society in 1976, he came to London as the AMS bicentennial 
lecturer and brought me a Chinese poem, in beautiful calligraphy, which he 
had composed on the flight. Later he encouraged me to visit Nankai and 
meet some of his younger Chinese colleagues. 

He remained active till the very end and his friends were all very pleased 
when he was awarded the first Shaw Prize in Mathematics, in recognition 
of his pioneering role in modern differential geometry. 

Michael Atiyah 





F O R E W O R D 

This year, 2005, is the hundredth anniversary of Einstein's Annus 
Mirabilis. We recall his repeated emphasis on the need to geometrize the 
foundation of physics. It is thus especially appropriate this year to hold an 
International Conference on Differential Geometry Methods in Theoretical 
Physics. As a person associated with Nankai for many years, and as an 
early student and admirer of Professor S.S. Chern, I am particularly happy 
that this year's Conference site is his Nankai Institute of Mathematics. 

Professor Chern had eagerly anticipated his participation at this Con
ference. He is no longer with us, but his work and his spirit will be with 
this, and indeed with all future International Conference on Differential 
Geometry Methods in Theoretical Physics. 

Chen Ning Yang 





PREFACE 

The XXIII International Conference on Differential Geometric Methods 
in Theoretical Physics (XXIII DGMTP) was organized by Nankai Insti
tute of Mathematics from August 20th to 26th, 2005. It was Professor S.S. 
Chern and Professor W. Nahm who proposed the XXIII DGMTP on the 
occasion of the 60th anniversary of Professor S.S. Chern's paper "Char
acteristic classes of Hermitian manifolds". Unfortunately, Professor S.S. 
Chern passed away in December 2004. So this Conference is in memory 
of Professor Chern dedicated by more than one hundred mathematicians 
and physicists actively working in the field, in particular differential geom
etry, topology, gauge theories, statistical mechanics, mathematical physics, 
and so on. 

The XXIII DGMTP was held in the new building of Nankai Insti
tute of Mathematics. It was completed one month before the Conference 
and named Shiing-Shen Building in memory of Professor S.S. Chern who 
founded the Institute in 1985. 

The members of the International Advisory Committee include Pro
fessors Michael Atiyah, Jean-Michel Bismut, Shiing-Shen Chern, Alain 
Connes, Simon Donaldson, Ludvig Faddeev, Chaohao Gu, Vaughan F.R. 
Jones, Yuri. I. Manin, Edward Witten and Chen Ning Yang. We are greatly 
grateful to them for the very kind suggestions. We thank all of plenary and 
parallel session's speakers, not only for their bringing the newest develop
ments in the frontier of the field, but also for their kind cooperation in 
many ways. We highly obliged to all of the session organizers including 
Professors Victor Batyrev, Jean-Pierre Bourguignon, Louis H. Kauffman, 
Xiao-Song Lin, Werner Nahm, Antti Niemi, Andrew Strominger, Fa Yueh 
Wu, Yong-Shi Wu and Xin Zhou for their most excellent jobs. 

We are indebted to the Ministry of Education of China who mainly 
supported the Conference. 

We sincerely thank Sir Michael Atiyah and Professor C.N. Yang who 
are close friends of Professor S.S. Chern for their kind contributions of the 
special preface and memory article. 



xii 

Last but not the least we thank World Scientific Publishing Co. for their 
generous support for the publication. 

Mo-Lin Ge 
Weiping Zhang 
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Yangian and Applications 

Cheng-Ming Bai, Mo-Lin Ge 

Theoretical Physics Division 
Chern Institute of Mathematics 

Nankai University 
Tianjin 300071, P.R. China 

Kang Xue, Hong-Biao Zhang 

Department of Physics 
Northeast Normal University 

Changchun 130024, PR- China 

In this paper, the Yangian relations are tremendously simplified for Yangians 
associated to SU(2), 5(7(3), 50 (5 ) and 5 0 ( 6 ) based on RTT relations that 
much benefit the realization of Yangian in physics. The physical meaning and 
some applications of Yangian have been shown. 

1. Introduction 

Yangian was presented by Drinfel'd ([1-3]) twenty years ago. It receives more 
attention for the following reasons. It is related to the rational solution of 
Yang-Baxter equation and the RTT relation. It is a simple extension of 
Lie algebras and the representation theory of Y(SU(2)) has been given. 
Some physical models, say, two component nonlinear Schrodinger equation, 
Haldane-Shastry model and 1-dimensional Hubbard chain do have Yangian 
symmetry. Yangian may be viewed as the consequence of a "bi-spin" system. 
How to understand the physical meaning of Yangian is an interesting topic. 
In this paper, there is nothing with mathematics. Rather, we try to use the 
language of quantum mechanics and Lie algebraic knowledge to show the 
effects of Yangian. 

2. Yangian and RTT Relations 

Let Q be a complex simple Lie algebra. The Yangian algebra Y{Q) asso
ciated to Q was given as follows ([1-3]). For a given set of Lie algebraic 
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generators JM of Q the new generators J„ were introduced to satisfy 

[I\,In] = C\tiVIv, Cx^v are structural constants; (2.0.1) 

[h^nJ^Cx^Jv; (2.0.2) 

and, for Q ̂  sl(2): 

[J\, [Jn, h)) - [h, [Jfi, Jv}} = a\,ii,al3-({Ia, Ip, If}, (2.0.3) 

where 

a\\iva&i = T;k,\a,jGM/3rG„7pGcr7-p, (2.0.4) 

{xi, 12,13} = 2~2 xixjxk) (symmetric summation); (2.0.5) 

or for G = sl(2): 

[[JA,JM].[^.^r]] + [[J f f,Jr],[/A,^]] 

+ 0-aTvaj31C\ilv){IonIiJ,J1}. (2.0.6) 

When Cx^v = i£xnV{\n,v = 1,2,3), equation (2.0.3) is identically 
satisfied from the Jacobian identities. Besides the commutation relations 
there are co-products as follows. 

A ( J A ) = / A ® 1 + 1 ® / A ; (2-0.7) 

A( J\) = Jx ® 1 + 1 <8> J\ + -jCx^h ® Iv. (2.0.8) 

Further, the Yangian can be derived through RTT relations where R is 
a rational solution of Yang-Baxter equation (YBE) ([1-12]). 

After lengthy calculations, we found the independent relations for 
Y(SU(2)), Y(SU(3)), Y(SO(5)) and Y(SO(6)) by expanding the RTT re
lations and also checked through equations (2.0.1)-(2.0.3) and (2.0.6) by 
substituting the structural constants ([13-17]), where RTT relation (Fad-
deev, Reshetikhin, Takhtajan — RFT [18]) satisfies 

R(u - v)(T(u) ® 1)(1 <g> T(v)) = (1 <g> T{v))(T(u) <g> l)R{u - v). (2.0.9) 
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2.1. Y(SU(2)) 

Let P\2 be the permutation. Setting 

Ri2(u) = PRi2(u) = uPn + I; (2.1.1) 

T(u) = /+£«-" 
n = l 
oo 

rp(n) rp(n) 

T. (n) ^ ( n ) 
21 -^22 

n = l 

Kr0
l n ,+r3

( n )) , 
.(«) 

T(« ) 

1 (rp(n) 
2\

10 T3
(n)) 

and substituting the T(u) into RTT relation it turns out that only 

/ ± = r W / 3 = lr,(1) 
3 i 

j ± = 7 l 2 \ j 3 = ir3
(2) 

(2.1.2) 

(2.1.3) 

(2.1.4) 

are independent ones. The quantum determinant 
oo 

detT{u) = Tn{u)T22{u - 1) -T12(u)T2i(u - 1) = C0 + ^ « - n C n (2.1.5) 

gives 

n = l 

C0 = l, Cj = T0
(1) = t r T ^ , 

C2 
^(2) i2 + T«( i + ir0

(1)), 

The independent commutation relations of Y(SU(2)) are: 

[A,-^] = ie-Xuvh (A,/j,z/= 1,2,3); 

[-'A) •'nJ — 1€\nvJv\ 

and (A± = A\ ± iA2) 

[J3 , [J+ ,J_]] = ( J _ J + - / - J + ) 7 3 

(2.1.6) 

(2.1.7) 

(2.1.8) 

(2.1.9) 

(2.1.10) 

that can be checked to generate all of relations of equations (2.0.1), (2.0.2) 
and (2.0.6) with the help of Jacobi identities. 

The co-product is given through (RFT) as 

ATah = ^2 Tac ® Tcb- (2.1.11) 
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The simplest realization of Y{SU{2)) is 

N 

I = 5 ^ 1 * (i : lattice indices), (2.1.12) 

N N 

J = ^/x«Ii + 5 3 Wyli x L,-, (2.1.13) 
i = l i<j 

where 

1 i< 3 
Wij = { 0 i = j (for any representation of SU(2)) (2.1.14) 

or 

Wjfc = icot —— (only for spin - , Haldane — Shastry model [19 — 21]), 

(2.1.15) 
and ^ arbitrary constants. Noting that //» plays important role for the 
representation theory of Y(SU(2)) given by Chari and Pressley ([22-24]). 

The big difference between representations of Lie algebra and Yangian 
is in that in Yangian there appear free parameters \ii depending on models. 

Another example for single particle is finite W-algebra ([25-26]). Denot
ing by L and B angular momentum and Lorentz boost, respectively, as well 
as D the dilatation operator, the set of L and J satisfies Y(SU(2)) where 
([13],[25]) 

I = L (2.1.16) 

J = I x B - i ( D - l ) B (2.1.17) 

and 

[Ja,J/3] = i e Q / 3 7 ( 2 I 2 - c ' 2 - 4 ) I 7 , 4 casimirof 50(4,2) . (2.1.18) 

There are the following models whose Hamiltonians do commute with 
Y(SU(2)). 

• Two component nonlinear Schrodinger equation (Murakami and Wa-
dati [27]) 

ii>t = ~i>xx + 2c|V|V, (2.1.19) 
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I = Jdxil>+(x)(l)apMx); (2-1-20) 

J = -i / dxip£(x)(^)apipp(x)-^ / dxdye(y-x)(^)pxi>p{x)il)i(y)il)a(x)ipx{y)-

(2.1.21) 

• One-dimensional Hubbard model (for N —> co, [28]) 

JV " 1 1 

t = l i = l 
(2.1.22) 

J± = Ji ±iJz, 

J+ = Yf9itiatbi-UYieitiltll 

J- = J2e^btaJ + uJ2e^IrI!> 

Js = l^e^iataj - btbj) + U'£ei,jI?l7, (2.1.23) 
i,j i<3 

where 

1 i<j, 
i,j = 8i,j-i - 5i,j+i, £i,j = { 0 i=j, (2.1.24) 

-1 % > j . 

Essler, Korepin and Schoutens found the complete solutions ([29-30]) and 
excitation spectrum ([31]) of 1-D Hubbard model chain. 

• Haldane-Shastry model ([19-21]) whose Hamiltonian is given by a 
family. The first member is 

where and henceforth the ' stands for i =fi j in the summation and Py- = 
2(Si • Sj- + | ) , Zk = expi7r&, Zij = Zi- Zj. The next reads 

ZiZjZk 

i,j,k Zi3ZJkZki 

g3 = £ , ( z l z ^ ) ^ f c - 1 ) ' (2-L26) 

and 

HA = ff4 = E \7
ZfZfy )(^« - 1) + H'A, (2.1.27) 
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H'4 = -\H2 - 2^(p^nPij - 1), (2.1.28) 

where 

Pijk = PijPjk i PjkP,ki + P.ki-^ij, 

Pijki = PijPjkPki + (cyclic for i,j,k and I). (2.1.29) 

The eigenvalues of H2 and H3 have been solved in Ref. [21] and numerical 
calculations were made for H^. The H2 and H3 were shown to be obtained 
in terms of quantum determinant ([32]). 

• Hydrogen atom (with and without monopole, [33]) 

where \x is mass, q = zeg, K = ze2 and g being monopole charge. 
• Super Yang-Mills Theory (N = 4): Y(SO(6)) ([34]) 

^ = 2 E E M J ) C + I - /i(i) = Ep/l(0) = l. (2.1.31) 
a j k=l 

where P J is projector for the weight j of SU{2) and a stands for "lattice" 
index. 

2.2. Y(SU(3)) 

For the Yangian associated to SU(3), there are the following independent 
relations 

[h,In]=ihn*Iv, [h,J»]=ihn»Jv (\,ft,v = l,--- ,8). (2.2.1) 

Define 

/£> = h ± ih, U{
±

1] =I6± il7, Vil) = h T ih, ^j-I(s1} = h (2.2.2) 

(2) (2} (2") 

and Jfj, represents the corresponding operator for 2± , U± , V± ' and 
/§ \ J3 \ After lengthy calculation one finds that based on RTT relation 
there is only one independent relation for Y(SU(3)) additional to equation 
(2.2.1): 

[/ia),/ia)] = ^ ( {4 1 ) .^ i 1 , .^ 1 ) } - {^ 1 ) .^ 1 ) .^ 1 ) } ) (2-2-3) 
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where {• • • } stands for the symmetric summation. The conclusion can be 
verified through both the Drinfel'd formula (Cx^ = ifx^v) and RTT rela
tions with replacing P\2 in SU(2) by 

where A^ are the Gell-Mann matrices. Setting 

OO 

T(«) = ^ u - T ( n ) , (2.2.5) 
n=0 

y(") = 

' 1 rp{n) rp(n) 1 rp(n) rp(n) -rp{n) rp(n) -rp{n) 
3 i 0 + J 3 + 7 3 J 8 1l ~%l1 J 4 _ U S 

T ( " ) I ; T ( " ) I T W TC") _L 1 T̂ ™) T^") ,'T(n) 
T ( " ) _I_ »T(n) T W X , T W 1 T ( " ) 2 T W 
J 4 + * J 5 J 6 ~rll7 3

10 \/3 8 
(2.2.6) 

and substituting them into RTT relation we find equations (2.2.1)-(2.2.3) 
are independent relations together with the co-product, for example, 

A / f = i f ® 1 + 1 ® /<?> ± 2(41} ® /£> - /£> ® #>) 

+ hv™ ® CT^ - C/^ ® V^1') (2.2.7) 

and others. 
The quantum determinant of T(u) which is 3 by 3 matrix for the fun

damental representation of gl(3) takes the form 

det3T(u) = Tn{u){T22(u - l)T33(u - 2) - T23{u)T32{u - 2)} 

-T12(u){T21(u - l)T33(u - 2) - T23(u - l)T31(u - 2)} 

+T13(u){T21(u - l)T32(u - 2) - T22{u - l)T31{u - 2)} 

= £ ( - l ) p T l p i ( w ) T 2 p 2 ( W - l)T3p3(n - 2) (2.2.8) 
p 

where p stands for all the possible arrangements of (pi,P2,P3)- In compar
ison with the quantum determinant 

det2T(U)= JT ( j Z ^ u - M + * ) ( T W r W - ^ > r W ) , (2.2.9) 
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now we have 

det3T(U)= Y a + ^ - l ) ' ^ ( P + g - l ) ! M - ( m + i + f c + P + g ) 
{) M,i,=o (^-D"' (P-W 

(rp{k)(rp(m)rp(p) rp{m)rr(p)\ rp(k) (rp(m)rp(p) rr(m)rr(p)\ 

i J l l ^ 2 2 -'33 J 2 3 1 3 2 J — -̂  12 VJ21 J 3 3 ~ x 23 J 3 l i 
I rp{k),rp(m)rp{p) rp(m)rp(p) x-> 
' - ' 13 \-'21 -'32 J 2 2 J 3 1 / / 
oo 

= ^ u - " C n , (2.2.10) 
71=0 

i.e., 

Co = 1, Ci = T0
(1), C2 = T0

(2) + T0
(1) + 2(T0

(1))2 - I2 , (2.2.11) 

OO 

I 2 = E J A ' (2-2-12) 
A = l 

When we constrain detT(u) = 1 it leads to Y(SU{2)) and Y(SU(3)) that 
are formed by the set {h,J\}, A = 1,2,3 and A = 1,2, ••• ,8 for SU(2) 
and SU(3), respectively. 

An example of realization of Y(SU(3)) is the generalization of Haldane-
Shastry model ([19-21]) for the fundamental representation of generators of 
517(3): 

^ = I>f> (2-2.13) 

J» = Y, ViF? + A/„A„ £ WijFTFf, (2.2.14) 
i i^ij 

where Wij satisfies the same relation as in Haldane-Shastry model given in 
section 2.1 and F^ are the Gell-Mann matrices. 

2.3. Y(SO(5)) and Y(SO(6)) 

For SO(N) it holds 

[Lij,Lkl]=iC$<klLat, (2.3.1) 

where 

Cilki = SikSjsSit - 5u5js5kt - SjkSis5it + SjiSis5kt- (2.3.2) 
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The rational solutions of YBE for SO(N) were firstly given by Zamolod-
chikov's ([35]). They are also re-derived by taking the rational limit of the 
trigonometric R-Matrix: 

R(u) = f(u)[u2P + u(A-I- | P ) £ + | J£2], (2.3.3) 

where u stands for spectral parameter and £ the other free parameter ([36-
37]). The elements of R(u) are (a ,b,c ,d= - 2 , -1 ,0 ,1 ,2) 

3 3 
[R(u)}fd = u25ab6bc + u(da-b6c_d - 6acSbd - -5ad6bc)Z + ^ac5bd^. (2.3.4) 

For 50(5) , we introduce 

T(D = £ 

Si 3 — 

U-
£L 
y_ 
0 

1 U+ E+ 

Fz-\ F+ 

F - 2 

r~ 2 0 -F-
-V- - £ L 

V+ 0 
0 -V+ 

-F+ -E+ 

- F 3 - | -U+ 

-U- -E3-l 

(2.3.5) 

where 

£3 = £22 — E-2,-2, £3 = E\\ — E-1-1, U+ = En — £•-1-2) 
V+ = E2-i — £1-2, E+ = £̂ 20 — £0,-2, F+ = Eio — £0-1 , . . 
U- = E\2 ~ £ - 2 - 1 ; V- = E-12 — £ -2 £ - = E02 — £-20) 
F- = EQX — £_io-

r (2) 
lab -eEa

2
b
} (a, b = - 2 , -1 ,0 ,1 ,2) . (2.3.7) 

Substituting T̂ ™' (only n = 1,2 are needed to be considered) into RTT 
relation, there appears 35 relations for JM besides the Jacobi identities. 
However , a lengthy computation shows that besides 

there is only one independent relation 

[£32).*32)] = ^({U-,E+,F„}-{U+,E-,F+}-{V+,E-,F-}+{V-,E+,F+}), 
(2.3.9) 

where again { } stands for the symmetric summation. 

A realization of y(SO(5))is given as follows. Set 

Iab(x) = -i;+(x)(Iab)a^0(x) (a, 6 = - 2 , - 1 , 0 , 1 , 2 ) , (2.3.10) 
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{V>+(z), Mv))+ = S(x - y)5a0. (2.3.11) 

Then 

Iab = ^2lab(x), (2.3.12) 

Jab= J2 <x ~ V^acix^cbiv) (2.3.13) 
x,y,c^a,b 

satisfies the commuting relations for Y(SO(5)). The following Hamiltonian 
of ladder model not only commutes with Iab, i.e., it possesses SO(5) sym
metry, but also commutes with Jab-

H = H1 + Y/H2(x) + Y^H3(x); (2.3.14) 
X X 

Hx = 2h Y, [<£{x)c*{y) + di{x)da{y) + H.C.}; (2.3.15) 
<x,y> 

H2(x) = C/(ncT - l-){nci _ I ) + (c _» d) + V(nc - l)(nd - 1) + JSC • Sd 

= I E 1 ^ + ( | J + \v)WUa - 2); (2.3.16) 
a<b 

H3(x) = -2t3{4(x)da(x) + H.C). (2.3.17) 

Because locally 50(6) ~ SU(4) we introduce (15 generators) 

T^=Iab, T™=I%\a,b= 1,2,...,6.) (2.3.18) 

and the -R(u)-matrix reads 

R{u) = f(u)[u2P + v£(A -2P-I) + 2£2/]. (2.3.19) 

The RTT relation gives 4+4+441 + 315+225 more relations. After care
ful calculations one finds ([15-16]) that there are the following independent 
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relations for Jab themselves: 

(2) r(2)l 
34 J 

\rz> T l J i2 ' i ; 

rr(2) r(2h 
[ i i2 i-'se J 

[I: (2) r(2)i 
34 ^56 J 

•^j({h3,Il6,he} + {-̂ 23,-̂ 15,-̂ 45} + {-̂ 14,̂ 25,-̂ 35} 

+{hi,he,he} - {I13,he,he) - {A3,-^25,-^45} 

-{hi, hs, hs} - {hi, he, he}); (2-3.20) 

-^{.{hh,hi,he\ + {^15,-^24,-^46} + {-^26,-^13,-^35} 

+ {-̂ 26,-̂ 14,-̂ 45} — {-^25,-^13,-^36} — {-^25,-^14,-^46} 

- U l 6 , / 2 3 , / 3 5 } - {/l6,/24,/4B}); ( 2 ' 3 - 2 1 ) 

r(i) 7(i) JWX^ITW r(!) TWX^STW TW 
24 

+{I: 

({I 45 ' -"13 ' Ji6 } + ihb ' hi ,he I + {-"; 36 >J14 ' M e J 
r(Di 

(1) r(l) 7-(l)l 
36 i-"24 i ^ e } {•'35 i J M '-"16 

jW 7-UJl /7-(l) r(l) /-(l)l i 14 ' M 6 J l i 3 5 ' i 2 4 '-"26 J 
r(l) r(l) T-Ml 

(1) r(l) r ( l ) l -W.-T: 13 '-"le / i i 46 i-1: 
(1) r ( l ) r(l) 

23 i i 2 6 })• (2.3.22) 

3. Applications of Yangian 

The first example was given by Belavin ([38]) in deriving the spectrum 
of nonlinear a model. Here we only show briefly some interpretations of 
Yangian through the particular realizations of Yangian. 

3.1. Reduction of Y(SU(2)) 

The simplest realization of Y(SU(2)) is made of two-spin system with Si 
and S2 (any dimensional representations of SU(2)): 

J ' = 
U+V [L + V 

(/xSi x l + i / S 2 x l + 2ASi x S2), (3.1.1) 

that contains the (antisymmetric) tensor interaction between Si and S2. 
For example, for Hydrogen atom Si = L and S2 = K (Lung-Lenz vector). 

For Si = S2 = 1/2, when 

\iv= A2, 

we prove that after the following similar transformation 

(3.1.2) 

Y = A3'A~l, A 

"1 0 
0v 
OtA 

.0 0 

0 0" 
iXO 
v 0 
0 1. 

(3.1.3) 
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the Yangian reduces to 50(4): (p = v + i\ = \fv2 + \2eie) 

Yi = 

Y2 = 

Y3 = 

Mi 0 
0 Li 

M 2 0 
0 L2 

± a 3 0 
0 \a3 

Mi 

, M2 = 

0 p 
p-1 0 

0 -ip 
ip-1 0 

Lx 
Op'1 

P0 

1 0 -ip-1 

ipO 

1 
, M3 = -cr3. 

and 

* • = & " > - ! • 

(3.1.4) 

(3.1.5) 

Namely, under \iv = A2, the Y reduces to SO(4) by M± = Mx ± iM2, 
M+ = pa+, M_ = p_1cr_. The scaled M± and M3 still satisfy the SU(2) 
relations: 

[M3, M±] = ±M±, [M+,M_] = 2M3 (3.1.6) 

and there are the similar relations for L. 
It should be emphasized that here the new "spin" M (and L) is the 

consequence of two spin(^) interaction. As usual for two 2-dimensional 
representations of SU{2) (Lie algebra) 

2 ® 2 = 3 (spin triplet) © 1 (singlet). 

However, here we meet a different decomposition: 

2 ® 2 = 2 ( M ) 0 2(L). 

(3.1.7) 

(3.1.8) 

The idea can be generalized to SU(3)'s fundamental representation 

JX = ul$ + vl$ + A/A M„ J2 FUFV> (3-1-9) 

[F^, Fi<A = ifnv\Fi\kj (A, p, v = 1,2, • • • ,8). 

Under the condition 

uv = A2, v + iX = p, 

(3.1.10) 

(3.1.11) 
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and the similar transformation 

Yll=AJliA-1/(u + v), A = 

1 0 0 0 0 0 0 0 0 
0 v OiAOO 0 0 0 
0 0 i/ 0 0 0 tA 0 0 
OiAO i / 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 i / 0 iAO 
0 0 iA 0 0 0 (/ 0 0 
0 0 0 OOiAO j / 0 
0 0 0 0 0 0 0 0 1 

the Yangian then reduces to 

" -XJ_ 0 0 

Y(I-) 

™ = T 

Y(U+) = 

Y(V+) = 

pi- 0 
0 /_ 

"A3 0 0 
0 A3 0 

. 0 0 A3 

U+ 0 0 
0 pU+ 0 
0 0 p-xXJ. 

p~lV- 0 0 
0 V- 0 
0 0 pV. 

Y{I+) 

Y(h) = ~2 

+ J 

Y(U.) 

Y{V-) = 

pl+ 0 0 
0 p~lI- 0 

. 0 0 h 

A3 0 0 " 
0 A3 0 
0 0 A3 

~U- 0 0 
0 p^U- 0 
0 0 pU. 

pV- 0 0 ' 
0 V- 0 
0 U p 

(3.1.12) 

(3.1.13) 

The usual decomposition through the Clebsch-Gordan coefficients for the 
representations of Lie algebra SU(3) is 3 (8) 3 = 6 © 3. However, here we 
have 

3<g>3 = 3®3_©3, 

and 

En U + V T.J. 

(3.1.14) 

(3.1.15) 
A = l A = l 

It is easy to check that the rescaling factor p does not change the commu
tation relations for SU(3) formed by I±, U±, V±, h and 1$. In general, we 
guess for the fundamental representation of SU(n) we shall meet 

>n = n © n © n + ----|-n (n times). (3.1.16) 
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Next we consider Yang-Mills gauge field for reduced Y(SU(2)). For a 
tensor wave function (x = {XI,X2,X3,XQ}), 

* ( I ) = | | iMx) | | (»,j = 1,2,3,4). (3.1.17) 

An isospin transformation yields 

*'(a;) = U(x)*(x), U{x) = 1 - i6aJa, (3.1.18) 

where 

Ja = uSa ® 1 + vl <g> Sa + 2XeabcS
b ® Sc, (3.1.19) 

or 

[Ja]°f = ui^crySps + v ^ " ) / * * ^ + iaeabc(S
b)a7(S

c)ps. (3.1.20) 

Define 

Dp = dll+gAll, (3.1.21) 

i.e., 

[ A ^ a / 3 = SMVa/3 + < ^ W ^ < M * ) , AM - A%Ja. (3.1.22) 

The gauge-covariant derivative should preserve 

5(D^)=0, (3.1.23) 

i.e., 

(-id^ix) + g5Al)[Ya)f8 - ig6a{x)Al\Jb, Ja]fs = 0. (3.1.24) 

When uv = A2 and by rescaling 

Ya = (u + v)Ja, (3.1.25) 

we have 

5AI = eabce
b(x)A^(x) + -d^a(x), (3.1.26) i 

9 

and 

i^„ = -[D„DV\ = F^Ya, (3.1.27) 

# = 
0 * 5 

*£„ = 3 ^ - d ^ + z ^ a f c c ^ ^ . (3.1.28) 

space has been separated to two irrel 

where \I>i and ^ 2 are 2 x 2 wavefunction. 

Here the tensor isospace has been separated to two irrelevant spaces, i.e 
"*i 0~ 
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3.2. Illustrative examples: NMR of Breit-Rabi Hamiltonian 
and Yangian 

The Breit-Rabi Hamiltonian is given by 

H = K-S + fiB-S, (3.2.1) 

where 5 = \ and B = B(£) is magnetic field. 
The Hamiltonian can easily be diagonalized for any background angular 

momentum (or spin) K. The S stands for spin of electron and for simplicity 
K = Si(5i = 1/2) is an average background spin contributed by other 
source, say, control spin. Denoting by 

H = H0 + Hi(t), H0 = a S i • S2 , ffi(i) = /*B(t) • S2 . (3.2.2) 

Let us work in the interaction picture: 

Hj = A*B(t) • (e i Q S l-S 2S 2e- i Q S l-S a) = fjB(t) • J, (3.2.3) 

J = ^ i S i + M 2 S 2 + 2A(Si x S 2 ) , (3.2.4) 

where fi\ = | ( 1 — cosa), /x2 = | ( 1 + cosa), A = ^sina. Obviously, here we 
have fj,ifX2 = A2. It is not surprising that the y(517(2)) reduces to 50(4) 
here because the transformation is fully Lie-algebraic operation. This is an 
exercise in quantum mechanics. 

For generalization we regard fi\ and /Z2 as independent parameters, i.e., 
drop the relation fiifX2 = A2. Looking at 

J = / x i S 1 + M 2 S 2 - i ( / i i + / i 2 ) ( S i + S2) + 7 ( S 1 + S 2 ) + 2AS 1 xS 2 . (3.2.5) 

When 7 = | , /x2 — Mi = cosa and A = ^sina, it reduces to the form in 
the interacting picture. Putting 

Sx + S2 = S, 2A = - - ( / i is not Plank constant). (3.2.6) 

In accordance with the convention we have 

2 h 1 
J = 7 S + J2MiSi + - S i x S3 - -(/ii + M2)S = 7 S + Y. (3.2.7) 

i=\ 

Since J —• ^S + J still satisfies Yangian relations, it is natural to appear 
the term 7S. The interacting Hamiltonian then reads 

HT(t) = -7B( t ) • S - B(i) • Y. (3.2.8) 
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When Hi = 0, h = 0, it is the usual NMR for spin 1/2. To solve the 
equation, we use 

dt 
= Hi{t)*(t), |tf(t))= £ aa(t)\Xa), 

a=±,3;0 

where {x±, X3} is the spin triplet and xo singlet. Setting 

B±(t) = Btit) ± iB2(t) = BieT i w o t , and B 3 = const. 

and rescaling by 

o±(t) = e ± - o t 6 ± ( i ) , 

we get 

(3.2.9) 

(3.2.10) 

(3.2.11) 

.db±(t) 

,da3(£) 7B1 
1 — ; — — 

dt 
.da0(t) 

7 { ^ B i a 3 ( i ) T (^o7 - 1 - B3)b±{t)} ± -^=p_Biao( i ) , 
2 ^ ' 

dt 

{b+(t) + b-(t)}--n-B3ao(t), 

\n+{^Bx\b-{t) - 6+(*)]} + SaaaW, 

where /x± = (fii — M2 ± i f ) , i-e., 

!*(*)> 

6X(0 
<13(*) 

6_(t) 
a0(t)_ 

,Hi 

u)0 - 7S3 -7B1 ^ 
v̂ 2 

(3.2.12) 

- B i 

0 _ 7 B l ^ _ ( a , 0 _ 7 B 3 ) - ^ _ J B 1 

^H+Bi -&+B3 - ^ j M + ^ i 

0 2 7 5 ^ - ^ 
7 B i ^ - i / i _ B 3 

0 

ctt =Him))-
Noting that Hi is independent of time, we get 

\$(t))=e-iEt\$(t)). 

Then 

det \Hr -E\=0 

leads to 

£ 4 - [(Wl - 7B3)2 + 12B\ + \ti+H-{B\ + Bl)]E2-

(3.2.13) 

(3.2.14) 

(3.2.15) 

(3.2.16) 

-u+H-[BfK - 7S3)2 - 27fl3B1
2(wo - 7S3) + 7 2 #i ] = 0. (3.2.17) 
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There is a transition between the spin singlet and triplet in the NMR 
process, i.e., the Yangian transfers the quantum information through the 
evolution. The simplest case is £?i = 0, then the eigenvalues are 

E = ±(LJ0 - 7B3), E = ±LJ = ± ^ y ^ (MI - H2)2 + y • (3.2.18) 

It turns out that there is a vibration between s = 0 and s = 1. 

< s2 >= 0 at t = £- (total spin = 0), (3.2.19) 
LLC 

< s2 >= 2 at t = - (total spin = 1). (3.2.20) 
u> 

Under adiabatic approximation it can be proved that it appears Berry's 
phase. Obviously, only spin vector can make the stereo angle. The role of 
spin singlet here is a witness that shares energy of spin=l state. 

Actually, if 

B±(t) = Bo sin 6eTi"ot, B3 = B0cos6, (3.2.21) 

and 

lxn) = ITT>, |xi-i) = IU), lxio) = ^ ( | U ) + IIT», 

IXoo> = ^ ( | U > - U T » , (3-2-22) 

then let us consider the eigenvalues of 

H = aSi • S2 - 7 £ o S 3 - 9B0J3, (3.2.23) 

under adiabatic approximation which are 

E± = \ { ~ ± y W f ^ + M - ) , (3.2.24) 

and 

A(±) = [2(a2 + 5
2S0V+M-)]-1 / 2[(«2 + < ? 2 B 0 W - ) 1 / 2 ± ^ ' ^ (3-2-25) 

f™ = [2(a2+g2B2^^)}-'/2[^±(a
2+g2B^+^)l/2Ta]1/2. (3.2.26) 

We obtain the eigenstates of H besides \xu) (i = 1,2) 

| x ± ) = / i ( ± ) | X i o ) + / r ) | x o o ) , (3.2.27) 
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where 

|Xu(t)> = cos2 ^ |x i i ) + - ^ s i n f l e - ^ l x i o ) +s in 2 ie-^lxi-i), 

|Xi-iW> = sin2 ^ - o ' l x i i ) - - ^ s i n ^ e - ^ l x i o ) +cos 2 °-\Xi-i), 

\x±(t)) = ^ / P H - s i n ^ e ^ ^ l x i i ) + V^cos^Xio) +s in0e- i - o t | x 1 _ 1 )} 

+# ) |Xoo>. 

We then obtain 

(Xn(t%lxi i (*)> = -«"o(l - cos<?)> 

< X i - i ( t % l x i i ( t ) > = * " o ( l - c o s 0 ) , 

(x±(t)\§-t\x±(t)) = o. 

(3.2.28) 

The Berry's phase is then 

7i±i = ±fl, Q, = 2TT(1 — cos#), 

whereas 710 = 700 = 0. The Yangian changes the eigenstates of H, but 
preserves the Berry's phase. 

(3.2.29) 

(3.2.30) 

3.3. Transition between S-wave and P-wave 
superconductivity 

We set for a pair of electrons: 

5 : spin singlet, L = 0; (3.3.1) 

P : spin triplet, L = 1. (3.3.2) 

Due to Balian-Werthamer ([39]), we have 

A(k) = - ^ E ^ k > k ' ) f ^ y t a n h f £(k')> (3-3-3) 
£(k) = (e2(A0 + | A ( k ) | 2 ^ . (3.3.4) 

Therefore, still by Balian-Werthamer ([39]), we know 

V2Yhl(k) y l i 0(k) 
y l j 0(k) >/2Yi,_i(k) 

A(k) = A(fc)(f)* 
, 471 \ 

= (-V6)A(fc)( y ) i$o,o(k) , 

(3.3.5) 
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<t>0,0 = 
1 

71 
o y0,o 

-Y0,o 0 

Introducing 

v^8 
*o,o(k) = ^ { F i , - i ( k ) x n - n , o ( k ) x i o + n , i ( k ) x i - i } = - ^ 

where Xn,Xio a n d Xi-i stand for spin triplet: 

$0,0 = $J=0,m=0-

The wave function of SC is 

'M = ! > * . ( * ) ; (M = 1,2,3), 

k - - k z 

-kz - k + 

(3.3.6) 

(3.3.7) 

(3.3.8) 

(3.3.9) 
j = l 

ihv 
JM = J2 A ^ M W - ^e M A,(5 A ( l )5 y (2 ) - SX(2)S"(1)), (3.3.10) 

i = l 

and noting that JM —> JM 4- / / M does not change the Yangian relations, we 
choose for simplicity / = —|(Ai + A2). Then we obtain for G = k • (J + / I ) 

G^o,o = k • (J + /I)<Ao,o = ^ ( A 2 - A! + y ) $ o , o , (3.3.11) 

G$o,o = k • (J + /I)$o,o = A = ( A 2 - Ai " y )^o ,o . (3.3.12) 

The transition directionally depends on the parameters in Y(SU(2)). For 
instance, 

SC-+PC: Gfofi = ^ $ 0 , 0 , G$0,o = 0, if Ai - A2 = ~ , (3.3.13) 

and 

PC - SC : C?0o,o = 0, G$0,o = • ^ 0 , 0 , if A x - A 2 = y . (3.3.14) 

We call the type of the transition "directional transition" ([40]). The con
trolled parameters are in the Yangian operation. They represent the inter
action coming from other controlled spin. 

We have got used to apply electromagnetic field A^ to make transitions 
between I and / ± 1 states. Now there is Yangian formed by two spins that 
plays the role changing angular momentum states. 
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3.4. Y(SU(3))-directional transitions 

Setting 

F„ = \ \ , [FA,FM] = ifx^Fv, (3.4.1) 

/M = E ^ (3-4-2) 

[F?,F?]=if^6iiFy, (3.4.4) 

where {FM} is the fundamental representation of SU(3) and (i,j,k = 
1,2,...,8) 

Aijfe = W^W,-* + WjkWki + WkiWij = - 1 . (3.4.5) 

(Here, no summation over repeated indices, i ^ j ^ k). The reason that 
such a condition works only for 3-dimensional representation of SU(3) is 
similar to Haldane's (long-ranged) realization of Y(SU (2)) ([19]). In SU(2) 
long-ranged form, the property of Pauli matrices leads to ( IT ± ) 2 = 0. In
stead, for SU(3) the conditions of J^ satisfying Y(SU(3)) read 

J2 a - wD(i+v+u+ - E/r*rT+Wctf" - ^r v~ T 
+I+V+U+ - U-Vfl-) = 0, (3.4.6) 

and 

£(Wt/+ - urvrin = o, (3.4.7) 
that are satisfied for Gell-Mann matrices. 

The simplest realization of Y(SU(3)) is then 

1 i>j 
Wij = { 0 i=j (Wij^-Wjt). (3.4.8) 

-1 i<j 
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Recalling (J8 = &Y) 

I+ = 

I3 = 

We find 

"0 1 0 
0 0 0 

.0 0 0. 

1 0 0 
0 - 1 0 
0 0 0 

u+ = 

' y = 3 

0 0 0 
0 0 1 
0 0 0 

10 0 
0 1 0 
0 0 - 2 

,v+ 
0 0 0' 
0 0 0 
1 0 0 

(3.4.9) 

Jn = {I±,U±,V±,h,Is}, 

tyj 

u± = '£iKUt±h'£lwij[u?(if - -Yi) + i?v?], 
i^j 

V± = £ > y ± thYWiAVfilf + =Yj) + U?If], 
* # j 

h = 5 > J ? + hYJWij[ltlJ - ku+Uf - V+Vr)}, 
i^j 

(3.4.10) h = J2 ̂  + hJ2 wv(UtUJ - V+Vf), 
i iy£j 

where /ij and h (not Planck constant) are arbitrary parameters. Notice 
again that the simplest choice of Wij is given by equation (3.4.8). 

When % = 1,2, Y(SU(2)) makes transition between spin singlet and 
triplet. Now Y(SU(3)) transits SU(3) singlet and Octet. For instance, set
ting 

| O = \du), \n°) = 4=(l««> - \dd}), \K~) = \du), \K°) = \ds), 

V°) 
V~@) 

V2 

\uu)-\dd)+2\ss)),\ ?70') = 
1 

\/(3) 
\uu) + \dd) + \ss)). 

Special interest is the following. When 

Mi - M2 = - 3 / i , / = :(Mi - M 2 ) , 

(3.4.11) 

(3.4.12) 

by acting the Yangian operators on the Octet of SU(3), we obtain (see 
Figure 3.1) 
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|KJ> JK°> 

1+ o I-
1 0 * " k°> \v°) i / f *|7r+> 

|K-> |K°) 

Fig. 3.1. Representation of SU(3) 

7"|7r+ >== 7 6 ( w ~ytl2)'7?° > + 7 f ( w + M 2 ) , 7 r°> "TI^ 1 ~ ^ + 3/l)|77°' >' 

U+\K° >= - L ( W + 2/x2)|r7° > +^=MlK° > " ^ ( W - M + 3 f t ) | / >, 

tZ-l^ 0 >= -L(2/ii + A*3)|»70 > + ^ ^ k ° > + - L ( W - w + 3/i)IT?0' >, 

F+|tf+ >= -L(2M 1 +^2)h° > - ^ = w k ° > + ^ ( W -M2 + 3/1)1/ >, 

V - | A - >= - - ^ ( / u +2 M ) to 0 > + ^ l k ° > + ^ ( / i i -/X2 + 3fc)|T,0' >, 

7 3 k° >= - ^ ( W — M2)l*l° > + ^ ( W - A * 2 + 3 h ) | / >, 

/8|r?° >= - | ( M I - M2)|r?° > - ^ ( / i l - M2 + 3ft)|i,0' >, (3.4.13) 

i.e., 

(I± + fl±)\rf' > = ±2V3/i|7r± >, (17+ + / 1 7 + ) | / > = —2v/3/i|-Kr° >, 

(CT_ + fU-)\r)0' > = 2V3/i|^° >, (V± + /V±)|T70 ' > = -2v /3/i|if :F >, 

(h + fh)\v°' >= -V6h\n° >, (ls + fh)\r? >= 2 ^ % ° >, (3.4.14) 
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and 

(7±+//±)kT>=±yf%0>, 

(U+ + fU+)\K° >= -^=h(V3\*° > -\v° >), 

(Z7_ + fU-)\K° >= ^ ( ^ k ° > - to0 >), 

(Y± + /V±)|tf * >= - ^ M V 3 | 7 r ° > +|r?0 >), 

(h + fh)\*° >= \j\h\rf >, (Is + fh)\v° >= ^h\rf> > . (3.4.15) 

The Yangian operators play the role to transit the Octet states to the singlet 
state of SU(3). 

Whereas, if 

Mi - M2 = 3/i, / = ~2 (Mi + A*2), (3.4.16) 

with the notations 

(A (2)+/A«)|770 ' >=0 , A = / a , (a = ±,3,8), U±, V±, (3.4.17) 

we have 

(/± + fl±)\** > = T^f%° > ±2^%°' >, 

(17+ + fU+)\K° > = - ^ ( V ^ T T 0 > -\rj° >) - 2^3%° ' >, 

(I7_ + /[/_)|X° > = -^h(V3\n° > -\ri° >) + 2V3/i | / >, 

(F± + fV^K* > = ^ U ^ k 0 > +|77° >) + 2V3/I|TJ0' >, 

(h + fh)\K° > = ~ ^ W > +V6h\V
0' >, 

(Is + fl8)\r)° > = h\rf > - 2 ^ 2 % ° ' > . (3.4.18) 

Obviously, in this case the Yangian operators make the transition from the 
Octet to a "combined" singlet state of SU(3). 

file:///j/h/rf
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3.5. J2 as a new quantum number 

Because [I2, J2] = 0, [I2,/2] = 0, [32,IZ] = 0, but [J2, Jz] ± 0, we can 
take {I2,IZ, J 2 } as a conserved set. 

First we consider the case S i ® S 2 ® S 3 , where Si = S2 = S3 = \. 
We shall show that instead of 6-j coefficients and Young diagrams, J 2 can 
be viewed as a "collective" quantum number that describes the "history" 
besides S2 (S = Si + S2 + S3) and Sz. 

As representations of Lie algebra SU(2), we have 

Noting that | | ) and | | ) are degenerate regarding the total spin | . The 
usual Lie algebraic base can be easily written as 

0§,§ = ITTT>, 

<%i = ^f(|TU) + IUT) + llTT», 

4>f,_i = ^=(|TU) + i m ) + IUT», 

0 | , - | = | I I 1 ) , (3-5.2) 

and the two degeneracy states with respect to S2 and Sz are given by: 

0 i i = -kUTT> + IUT>-2 |m» , 2 ' 2 V 6 

0 i _ i = ^(ITU> + i m > - 2 | U T » , 2 , 2 V6 

^ , i = ^ ( | ITT)-TIT)), 

^ , _ i = ^ ( | T U ) - | I U ) ) . (3.5.3) 

To distinguish cf>' from <f> we introduce J: 

3 3 

3 = ̂ 2ui3i + ih^2(Six8j), (3.5.4) 
i=X i<j 
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and calculate J 2 . It turns out that 

3 1 
J ^ f , m = [^(ul +U2 + u\) + - (Ul«2 + U2U3 + U1W3) - / l2]$f,m ; 

3 1 7 

J V l , m = [j(w? + W2, + W3) + -U1W2 - U2U3 - UiU3 - -h2]$'im 

- — ( U l - M2 + ft)(«3 + / l ) * l , m ; 

2 v 

3 n 3 

J ^ I . m = — y ( « l - «2 - *0(u3 "
 h)®'l,m + [ 4 ^ ~ M2 

• 4«3 - 4^ ]* i ,m- (3-5-5) 

In order to make the matrix of J 2 be symmetric (then it surely can be 
diagonalized), one should put 

u2 = ui +u3. (3.5.6) 

The eigenvalues of J 2 are given by 

As = 2u2 + 2u2 + 3uiu3 - h2, 

A± = u\ + u\ - ~h2 ± l- {(2uj - u \ - h2)2 + 3(u2- h2)2) 3. (3.5.7) 
2 4 2 

The eigenstates of J 2 are the rotation of <b'x and $1 „ : 

(a\A = (COSI - S l \ 2 ) ( ^ , J V = Afaf m> (3.5.8) 

where 

sine/? = y/Z(u\ - h2)/uj, OJ2 = (2u\ - ul - h2)2 + 3(u§ - h2)2. (3.5.9) 

It is worth noting that the conclusion is independent of the order, say, 
{\®\)®\> \®i\®\) a n d the other way. The difference is only in the 
value of ip. 

The above example can be generalized to S i ( ^ ) S 2 0 L where Si = 
Si — \ and L2 = 1(1 + 1). As representations of Lie algebra SU(2), we have 

( !<g>! )®i=( i0o)<g) i=j+ i 1 1-1 
l (3.5.10) 
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There are no degeneracy for l±l, but two I states can be distinguished 
in terms of J 2 

3 1 

J 2 $ i+ l ,m = { T ( U 1 + u\) + 1(1 + l)u\ + -U\U2 + l(u2U3 + UiU3) 

-h2[l(l + l) + ±}}$l+ltm, 
3 1 

J 2 $ ,_ 1 > m = {-(U2 + u\) + 1(1 + l)u§ + -UiU2 -(1 + 1)«1U3 -(1 + 1)U2U3 

-h2[l(l + l) + ^)}<f>l_hm, 
3 1 

J2**,™, = { j ( u i + ul) + l(l + ! ) u 3 + 2 U i " 2 ~ w2W3 - W1U3 

-2h2[l(l + l)gM,m - VW+Vfr - u2 + h)(u3 + h)*lm, 

J2$2
m = - y ^ T I ) ( U l - U2 - h)(u3 - h)*}im 

+ [^(Ul - u2)
2 + 1(1 + l)u2

3 - | $ 2
m . (3.5.11) 

Again in order to guarantee the symmetric form of the matrix we put 

u2 = ui +u3, (3.5.12) 

then the eigenvalues and eigenstates of J 2 are given by 

A± =u2 + [Ki + i) + l ] u 2 _ h2[l{l + 1) + I ] ± 1WP, (3.5.13) 

ai,m \ _ I cos f - sin § \ (§}m 

\artm) Vsmf cosf A ^ , J ' 

where 

(3.5.14) 

w2 = P = [2u\ - u \ - h2(2l(l + 1) - i ) ] 2 + 41(1 + l)(u2 - h2)2, (3.5.15) 

2y/W±Tj,2 ,2, siny> = v v J(ul-h2). (3.5.16) 

As a simple example, we consider the spin structure of rare gas 

H = -aL • Si - 6S1 • S2, ( A = - ) . (3.5.17) 
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It describes the interaction of spin Si of an electron exited from Z-shell and 
the left hole S2 . 

H$i+hm = --(al + -&)$i+i,m, 

1 1 
tf$;_i,m = -[(/ + l)a - -&]$;_i,m, 

H (,771 

$2 
1 (a - | 6 )_ ay/l{l + 1) 
2 [ay/l(l + l) 

The eigenstates of ff associated to I, m are 

$ 1 ' 

l,mj 

COS-

sin ' 
— sm-
cos £ 

l,m 
$2 

where 

siny ^ 2 + 3 , W . _ ( I - A ^ + , ( I + I ) , A - £ . 

The eigenvalues are 

A;+i = - - ( / a + - ) , A/_i |[(i + D—|] 

Af = i(a + b) ± I[I(Z + l)a2 + ( | -6) 2 ] i 

The rotation should be made in such a way that 

which is satisfied if the matrix J 2 is symmetric, i.e., 

{2u\ -2h2\l(l + 1) + I]} 
7 = (ul-h*) 

2 ( 1 - A ) . 

(3.5.18) 

(3.5.19) 

(3.5.20) 

(3.5.21) 

(3.5.22) 

(3.5.23) 

Therefore, the parameter 7 in Y(SU(2)) determines the rotation angle <p. It 
is reasonable to think that the appearance of "rotation" of degenerate states 
is closely related to the "quantum number" of J2 . Transition between a+m 

and aj~m (1 = 1) can be made by J3. Because there are two independent 
parameters u\ and 113 in J, one can choose a suitable relation between u% 
and A = - such that 

J3Q; ~ a (3.5.24) 

i.e., the transition between two degenerate states in Lie-algebra is made 
trough J3 operator, because of 

[ J 2 , J 3 ] ^ 0 . (3.5.25) 
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3.6. Happer degeneracy 

In the experiment for 87Rb molecular there appears new degeneracy ([41]) 
at the special ±Bo (magnetic field), i.e., the Zeeman effect disappears at 
±J5o. The model Hamiltonian reads ([42]) (x is scaled magnetic field) 

H = K-S + x(k + ^)Sz, (3.6.1) 

where K is angular momentum and K2 = K(K+1). It only occurs for spin 
S = 1. It turns out that when x = ±1 there appears the curious degeneracy, 
that is, there is a set of eigenstates corresponding to 

E=-\. (3.6.2) 

The conserved set is {K2, Gz = Kz + Sz}. For G = K + S we have G = 
k ± 1, k. The eigenstates are specified in terms of three families: T, B and 
D. Only D-set possesses the degeneracy. 

Happer gives, for example,the eigenstates for x = ±1 ([42]): 

x = +1 HaDm = {-\)aDn 

x = - 1 H&Dm = ( - | ) & m ' 
(3.6.3) 

and shows that 

aDm = [2(K+~)(K + m + -)} * { - P Jj '-]'ai 

+ {(K + m)(K + m + l)}2a2 + l- ^ ^ ] 2 a 3 } ; 

(3.6.4) 

. / T , l x / „ Ixn i , r( i f — mH-K" + m) . i 
/ W = [ 2 ( / f + - X / f - m + - ) ] - i { P ^ J-]'ai 

u„ x/r^ iMi AK-m + l)(K + m + l).i 
+ [(K - m)(K -m + l)]»a2- [- ^ '-] 2a3}, 

(3.6.5) 

where a i = e\ ® em_i, a2 — eo ® em and 0:3 = e_i <g> e m + i . 
It is natural to ask what is the transition operator between aom and 

/?L»m? The answer is Yangian operator. In fact, introducing 

J±=aS+ + bK-±(s±Kz-szK±), (3.6.6) 

we find that by choosing a = —^^,b = 0, we have 

/?£>m —^ Ai(m)a D m + i and Q D m - ^ A 2 ( m ) f e m _ i ; (3.6.7) 
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and by choosing a — | , b — 0, we have 

fem - ^ Ai(m)az3m-i and aDm —^ A2(m)/?z>m+i. (3.6.8) 

The Yangian makes the transition between the states with B and —B, 
which here is only for S = 1. The reason is that for S = 1 there are two 
independent coefficients in the combination of a\, a-i and a^ and there are 
two free parameters in J. Hence the number of equations are equal to those 
of free parameters (a and b), so we can find a solution. The numerical 
computation shows that only 5 = 1 gives rise to the new degeneracy ([42]) 
that prefers the Yangian operation ([43]). 

3.7. New degeneracy of extended Breit-Rabi Hamiltonian 

As was shown in the Happer's model (H = K • S + x(k + ^)S^) there 
appeared new degeneracy for S = 1. It has been pointed out that the 
above degeneracy with respect to Zeeman effect cannot appear for spin= ^. 
Actually, in this case it yields for S = \ ([42]), 

E = -l-u>mS3, (3.7.1) 

where 

u& - [(1 + x2){k + l-) + 2xm}(k + | ) . (3.7.2) 

Therefore if the Happer's type of degeneracy can occurs, there should be 
ujm = 0 that means 

a;0 = - - ± i ^ l - — (k = K+-), (3.7.3) 

i.e., the magnetic field should be complex. 
However, the situation will be completely different, if a third spin is 

involved. For simplicity we assume Si = S2 = S3 = \ in the Hamiltonian: 

H = - ( a S 2 + 6S3) • Si + xVabSf, X = b/a, (3.7.4) 

then besides two non-degenerate states, there appears the degenerate fam-
ily: 

Ho%,±i = - ( ^ ) a D , ± i ' f o r x = ±l' (3-7-5) 

where 

< + i = -V2A| TU> ±VX| UT +(1 ± VA)| ITT>; (3.7.6) 
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<4,-l = " ^ 1 liT> TVX| ill +(1 T V\)\ Tll> • (3.7.7) 

The expecting value of S{ are 

< a D , ± i l 5 i l a i , ± i > ~ v ^ (x = 1); (3.7.8) 

< « B , ± j l5i laD,±i > ~ - ^ (^ = - 1 ) ' (3-7-9) 

namely, at the special magnetic field (a; = ±1) the observed < Sf > still 
opposite to each other for x = ± 1 , but without the usual Zeeman split. 

The reason of the appearance of the new degeneracy is obvious. The 
two spins S2 and S3 here play the role of S = 1 in comparison with Happer 
model. 

3.8. Super Yang-Mills (N — 4)-Lipatov model and 
Y(SO(6)) 

Beisert et al( [44-45]), Dolan-Nappi-Witten (DNW, [34]) and other authors 
([46-47]) proposed to take the quantum correction of the dilatation operator 
SD (D € 50(4,2) is a subalgebra of PSU(2,2|4)) as Hamiltonian for supper 
Yang-Mills (N = 4): 

H = 2_^Haa+i, (3.8.1) 

J W i = 2 5>(j)^«+i, MJ) = £ p M 0 ) = l, (3.8.2) 

where P J is projector for the weight j of SU(2) and a stands for "lattice" 
index. DNW showed that ([34]) 

[H,Y(S0(6))] = Q. (3.8.3) 

It turns out that the Hamiltonian H is nothing but Lipatov model ([48]) 
which was related to the Yang-Baxter form by Lipatov ([49]), Faddeev and 
Korchemsky ([50]). 

Based on Tarasov, Takhtajan and Faddeev([51]) the ^-matrix associated 
with any spin S reads 

KM = n*-n»+*'+Dt (3.8.4) 
V ; T(u - J)T(u + J + 1) 
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where u is spectrum parameter and s the spin (arbitrary). The trigonomet
ric Yang-Baxterization ([52]) gives 

R{u) = Y,PAx)pib) (z = e™)> (3-8-5) 
3=0 

where Pj(q) is the cy-deformed product with weight j . Taking the rational 
limit ([9],[36]) we have 

" - F J ^ T T W ™ ^ - ' (3'8'6) 
The Hamiltonian for the lattices a and a + 1 

Haa+1 = h x I2 x • • • x 7Q_! x — A M I ^ o ^ O ) ] " 1 x Ia+2 x • • • (3.8.7) 
cm 

is then 

H = } j Haa+i (3.8.8) 
a 

where 

Haa+l = {-1>(-Jaa+l) ~ i K - W l + 1) + V U + 2«) + V( l - 2fl) - ^ } U = 0 

= £ { - t f ( - i ) - W + 1) + 2V(1) - Um ± } i * a + 1 . (3.8.9) 

It describes the QCD correction to the parton model shown by Lipatov 
([48-49]). The diagonalization of Lipatov model has probably been achieved 
by de Vega and Lipatov ([53-54]). Noting that the j indicates the block in 
the reducible block-diagonal form. 

Using 

ip(x + l) = ip{x) + - , 
X 
n-1 

ip(x + n) = ip(x) + Y] —TT> 
t—1 x + k 
k=o 

ip(l) = - c , (3.8.10) 

and hence 

j 1 
w +1) = (̂i) + E i = w>+w) 

fc=i 

V>(-j) = V(l) + Hj) - lim - . (3.8.11) 
x—>0 a; 
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We obtain 

Ha,a+l = (-2)J2HJ)PL+I- (3-8.12) 
j 

Separating the finite part from the infinity the H is nothing but the 6D 
derived in super Yang-Mills (TV = 4) with the approximation. Of course, 
the derivation of SD based on super Yang-Mills (N = 4) explores much 
larger symmetry than Lipatov model. Therefore, DNW's result shows that 
the Lipatov's model possesses Y(SO(6)) symmetry. 

To obtain Y(SO(&)) in terms of RTT relation we start from the rational 
solution of ^-matrix whose general form for 0(N) was firstly by Zamolod
chikov and Zamolodchikov ([35]) and extended through rational limit of 
trigonometric Yang-Baxterization ([36]): 

1 a2 

R = u[u- -(N - 2)a]P + auAN + [-ua + —(N - 2)}I, (3.8.13) 

where u is spectrum parameter and a a free parameter allowed by YBE. 
Here we adopt the convention of Jimbo: 

P$ = 6aA, (AN)a
c
b
d = 5a'-b5c,-d (3.8.14) 

where 
j V - 1 N -1 ZV-1 

a,b,c,d = [-(—£-),-(—j-) + l,... ,(—;-)] (3.8.15) 

and N = 2n + 1 for Bn and N = 2n for Cn, Dn. 
The R-matrix is given by 

R = RP = u{u- 2a)I + u(2u - a)P + 2uaAN, (3.8.16) 

that coincides with Zamolodchikov's 5-matrix (up to an over all factor con
sidering the CDD poles) with a = 1 and u = ^ . Actually, Zamolodchikov's 
5-matrix is universal, i.e., model independent. 

S{0) = R(u) = Q±(u)u(u -2)[I + —P+ —AN] 
(72 <T2 

= Q±{u)u{u-2)[I --P + 
u u — 2 

l iVj , 

0 ( ) ~ r ( * ± & - i & ) r ( - i & ) (3-8-1?) 

where A = -ffz^, 0 = iXu. The spectrum parameter u is one-dimensional, 
but u can be taken to be the cut-off in 4-dimensional quantum field theory, 
for example 

u ~ l n A 2 , (3.8.18) 
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where A2 is Lorentz invariant, i.e., scalar. This is the reason why asymptotic 

behavior of quantum field theory model may be related to Yang-Baxter 

system. The Bethe Ansatz for S(9) with 5 0 ( 6 ) was discussed by Minahan 

and Zarembo ([46]). 

For given R(u) one can easily obtain Hamiltonian by 

H = \^-R(u)]\u=0, (3.8.19) 

for 0{N). 

However, the essential connection between Lipatov model and 5 0 ( 6 ) -

R T T formulation is still missing. 

4. R e m a r k s 

Although there has been certain progress of Yangian's application in 

physics, there are still open questions: 

(1) How can the Yangian representations help to solve physical models, 

in particular, in strong correlation models? 

(2) Direct evidences of Yangian in the real physics. 

(3) Wha t is the geometric meaning of Yangian? 
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This paper is dedicated to the memory of Professor S.S. Chern 

We construct a new Hodge theory on the cotangent bundle of a Riemannian 
manifold X. The corresponding Laplacian is a second order hypoelliptic oper
ator, which is self-adjoint with respect to a Hermitian form whose signature 
is (oo, oo). This Hodge theory interpolates between the classical Hodge theory 
on X and the geodesic flow on T*X. We also give results obtained with G. 
Lebeau on the analysis of the hypoelliptic Laplacian and on the hypoelliptic 
analytic torsion. Finally we explain the connections of this construction with 
Chern's proof of Chern-Gauss-Bonnet. 

Introduction 

The purpose of this paper is to describe a deformation of the classical 
Hodge theory of a compact Riemannian manifold X, whose corresponding 
Laplacian is a hypoelliptic operator on the cotangent bundle T*X. 

This construction came from the author's attempt to develop the Hodge 
theory of the loop space LX of X, and to construct the Witten deforma
tion [W82] of the Hodge Laplacian of LX which would be associated to the 
energy functional E. Such a Witten deformation, if it existed, would inter
polate between the Hodge Laplacian DLX on LX and the Morse theory for 
E, whose critical points are the closed geodesies in X. There is indeed no 
Hodge theory on LX, one difficulty being the construction of a L2 scalar 
product on the de Rham complex of LX. Still one can think of our con
struction as being the semiclassical limit of the non existing Hodge theory 
of LX. 
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Key words and Phases. Hypoelliptic equations, Hodge theory, Index theory and related 
fixed point theorems, Determinants and determinant bundles, analytic torsion 
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Needless to say, the construction of the hypoelliptic Laplacian can be 
done without any explicit reference to the loop space LX. Still many of the 
remarkable properties of this operator can be anticipated if one accepts the 
fact it is the 'shadow' of a Hodge theory to be on LX. 

Another impetus came from the realization of the fact that many proper
ties of the Witten deformation are related to an infinite dimensional version 
of the proof by Chern ^ 4 4 of Chern-Gauss-Bonnet. Indeed our strategy was 
to try finding what exotic Hodge theory corresponded to a formally defined 
supersymmetric path integral associated to the energy functional E on LX. 

This paper is organized as follows. In section 1, we construct the adjoint 
of the de Rham operator dT x with respect to an exotic bilinear form on 
the de Rham complex of T*X. 

In section 2, we give the Weitzenbock formula for the corresponding 
Laplacian, which turns out to be a hypoelliptic operator on T*X. 

In section 3, we show that the new Laplacian interpolates between clas
sical Hodge theory and the geodesic flow. 

In section 4, we give a self-adjointness property of the hypoelliptic Lapla
cian with respect to a Hermitian form of signature (oo, oo). 

In section 5, we summarize some of the results on the analysis of the 
new Laplacian obtained in "LUc jointly with Lebeau. 

In section 6, we state the main result we obtained in >̂LUb s ayjng that 
the Ray-Singer metric for the. hypoelliptic Laplacian is the same as the 
Ray-Singer metric associated to the classical Laplacian. 

Finally in section 7, we relate the above constructions to infinite dimen
sional versions of Chern-Gauss-Bonnet. 

The construction of the hypoelliptic Laplacian was announced in 
B04a; B04b; B04c I t i s d e t a i l e d i n B05 F o r a s u r v e y i w e a i s o refer to B 0 4 d . 

The analysis of the hypoelliptic Laplacian, and applications to analytic tor
sion are carried through in joint work with Lebeau ^ ^ 0 

1. A non standard Hodge theory 

Let M be a smooth manifold. Let T] be a nondegenerate bilinear form on 
TM. Let 4>:TM -> T*M be the morphism such that if U, V € TM, 

V(U,V) = (U,4>V). (1.1) 

Let r]* the bilinear form on T*M which corresponds to rj by the morphism 
<fi. Then 77* induces a nondegenerate bilinear form on A' (T*M). Let CLVM be 
a volume form on M. Let (0 ' (M) , dM) be the de Rham complex of smooth 
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compactly supported differential forms on M. We equip Q' (M) with the 
nondegenerate bilinear form, 

(s,s')= [ ri*{s,s')dvM. (1.2) 
JM 

Note that this bilinear form is in general neither symmetric nor antisym
metric. 

Let d be the formal adjoint of dM with respect to the bilinear form 
(1.2), so that if s, s' G Vf (M), then 

(s,dMs') = (dMs,s'y (1.3) 

—M 

Note that in general the formal adjoint of d in the sense of (1.3) is not 
equal to dM. 

Let X be a compact manifold of dimension n. Let -K : T*X —> X be 
the cotangent bundle on X. Let 6 = {p,dx) be the canonical 1-form on 
T*X. Let w = dT"x9 be the canonical symplectic form on T*X. This is a 
nondegenerate bilinear form on TT*X. 

Let d be the formal adjoint of dT x with respect to the bilinear 
form () on Q' (T*X), which is associated to u> and to the symplectic volume 
dVT'X-

It is easy to show that 

dT XJ = 0. (1.4) 

Observe that equation (1.4) is valid on any symplectic manifold. Indeed by 
using Darboux's theorem, equation (1.4) is just a reflection of the fact that 
w(£,0=0. 

Equation (1.4) says that the Laplacian which is associated to the above 
bilinear form vanishes identically. Recall that our ultimate purpose is to 
produce a hypoelliptic Laplacian. The vanishing of our symplectic Laplacian 
simply indicates we have gone too far in the right direction. 

Let us now explain in more detail the construction of the hypoelliptic 
Laplacian. Let gTX be a metric on TX. We identify TX and T*X by the 
metric gTX. Let VTX be the Levi-Civita connection on TX, and let RTX 

be its curvature. The connection V T X induces the splittings, 

TT*X = w* (TX © T*X), T*T*X = n* (T*X © TX). (1.5) 

Prom (1.5), we get the isomorphism, 

A' (T*T*X) = IT* (A' (T*X) §A' (TX)) . (1.6) 
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We denote with a ~ the objects which refer to the second factor in the right-
hand side in (1.6). Let VA (T T x^ be the connection induced by V T X on 
A' (T*T*X). 

Put 

ic 1 ) - ™ 
We identify 4> with an automorphism of TT*X = TX® T*X. The bilinear 
form r] which is associated to <f> as in (1.1) is given by 

U,V ^r,(U,V) = (-KM,TT*V)gTx +u(U,V). (1.8) 

Let ( ) . be the associated nondegenerate bilinear form on Q.' (T*X). Let 
_rp* y 

dj, the formal adjoint of <iT x with respect to 77 and to the symplectic 
volume form dvr*x-

Let 7i : T*X - > R b e a smooth function. Let Yn be the corresponding 
Hamiltonian vector field, so that 

Set 

Put 

d1 x7i + iY-HUJ = 0. (1.9) 

< * . * % « = / V*(s,s')e-2ndvT'X. (1.10) 
JT'X 

d^x = e - * < r * e * dTJ = e*2j* V * . (1.11) 

Then d^2H
 ls t n e f ° r m a l adjoint of dT'x with respect to ()J,H, and cL H 

is the formal adjoint of dj^ x with respect to () 1. 
Set 

A*,n = \ (C2W + dT'X) > 2t*w = 5 (^*?f + dnX) • (1-12) 

Clearly, 

%,H = e - w ^ , w e w . (1.13) 

If Z is a vector field on T*X, let L^ be the corresponding Lie derivative 
operator acting on Q' (T*X). 

More generally, let (F, V F ) be a complex flat vector bundle on 
X, and let g be a non necessarily flat Hermitian metric on F. Let 
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(£1' (T*X, n*F), dT x) be the de Rham complex of smooth compactly sup
ported forms on T*X with coefficients in F. The operator Lz still acts 
naturally on O (T*X,n*F). Set 

^ ( V f , / ) = ( / ) " ' v 7 . (1-14) 

The 1-form u (VF,gF) takes values in self-adjoints endomorphisms of F. 
Also there is an obvious extension of the bilinear form in (1.10) to a 

skew-linear form on fl' (T*X,TT*F), in which the metric gF is incorporated 
in the obvious way. It is then possible to extend the above constructions, 
and still obtain operators like the ones in (1.11)-(1.13), which now act on 
Q. (T*X,TT*F). In the sequel, we will deal with this more general situation. 

2. The Weitzenbock formula for the hypoelliptic Laplacian 

Let e i , . . . , e„ be an orthonormal basis of TX, let e 1 , . . . , e" be the corre
sponding dual basis of T*X. Let e i , . . . , en and e 1 , . . . , e™ be other copies 
of these bases. 

Then e i , . . . , en,e
l,..., e" is a basis of TT*X, and e 1 , . . . , e " , e i , . . . ,e„ 

is the dual basis of T*T*X. Set 

V^H = V^nei. (2.1) 

We give the Weitzenbock formula established in KU& . 

Theorem 2 .1 . The following identities hold, 

A%,n = \ (-AV ~ \ (RTX &>e^ ek>e/) e<ei*e**i? + 2Lv^n) 

- \ (LY* + \e%3V
F

eiu ( V F , / ) (e,-) + \w (VF,gF) (e,) V ? ) , (2.2) 

2lJ,w = \ (-Av - i ( i ? T X (ei, ej) ek, et) eVig*ig. + |VVW|2 

- A y W + 2VeiV&Heii& + 2V^WejHejip J 

- i Uyn + \ u (V
F,gF) (Yw) + \e%^F

e^ ( V ^ ) (e,) 

+ ^ ( V F , < ? F ) ( e i ) V g i j . 
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Given c S R, set 

* = J £ , Wc = < 4 . (2.3) 
When c £ R*, put c = ± l /o 2 , b > 0. We state a result which was established 
in B 0 5 . 

Theorem 2.2. The following identity holds, 

LY*° = V ^ r T * X , ® F + c e ^ + c(RTX (p,e*)p, e,-) e'ig,. (2.4) 

Moreover, 

A%,n° = 4 f - A K + 2 c L p - - ( i ? T X ( e i , e J ) e A : , e , ) e i e : ' ^ i e ' J 

- \ (LYW + ^ V ^ o ; ( V F , 5
F ) (ej) + \UJ (VF,gF) (e<) V ^ ) , (2.5) 

2$,«c = \ (~&V + c2 |p|2 + c(2eitg* - ") - i ( i J T X (eu ej) ek, et) jji&i 

- \ UYnc + \ u {VF,gF) ( y « c ) + \ e % ^ (VF,gF) (e,) 

For c e R*, £/ie operators ^ — A^uc, J^ — 2li-^c are hypoelliptic. 

Proof. Observe here that the result of hypoellipticity follows from a well-
known result by Hormander "•"'. • 

Observe that the operators Ainc,%& HC a r e n o t elliptic and not self-
adjoint. 

3. An interpolation property 

Let r : T*X -» T*X be the map (x,p) -> (x, - p ) . Set 

o± = \ (-Av ± 2 % - i ( i F x (ei, e,-) efc) ej> eVig*tg.) , (3.1) 

&± = - ( ± L y « + i e ^ V f i W ( V F , 5
F ) (e,) + ^ (VF,gF) (e,) Vg,) . 

Then a± commutes with r*, and that b± anticommutes with r*. 
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For a G R, let rQ : T*X -> T*X be the dilation (x,p) -> (a;, ap), so that 
r = r_ i . For c = ± l / 6 2 , set 

A^,±n = r*bA^nor*b-
1. (3.2) 

By (2.5), we get 

2 ^ b l ± W = ^ a ± + i b ± . (3.3) 

Let o ( r X ) be the orientation bundle of TX. Let §T"X be the Thom 
form on T*X of Mathai-Quillen M y ° " which is associated to the metric 
gTX and to the connection VTX. The form <J>T*X is a closed form of degree 
n with coefficients in o(TX), such that 7r*$T*x = 1. It is normalized in 
such a way that 

$ T * X = exp ( - \p\2 + . . . ) . (3.4) 

In (3.4), . . . designates an explicit complicate expression involving curva
ture. As is suggested by (3.4), the form $ T * X restricts to a Gaussian form 
along the fibre. 

One verifies easily that the operators o± are semisimple. The kernel of 
a+ is generated by the function 1, and the corresponding projector Q^_*x on 
this kernel is given by a —> 7r* (a A $ T x). The kernel of o_ is generated by 
$ T x, and the corresponding projector Q^_ X'\S given by a —» (7r*a) A$T"X. 

Let dx be the de Rham operator acting on fi' (X, F) in the + case or 
on £1 (X, F <8> o {TX)) in the — case, and let dx* be its formal adjoint with 
respect to the standard L2 Hermitian product. Let Ox = [cix,dx*] denote 
the corresponding Hodge Laplacian. 

The following result is established in ut> 

Theorem 3.1 . The following identity holds, 

-Ql'xb±a^b±Ql'x = l-Ux. (3.5) 

Observe that a formula similar to (3.5) plays a key role in the paper 
by Bismut et Lebeau ^i-ML ^ where the Hodge theory of a compact complex 
manifold is deformed into the Hodge theory of a submanifold. Identities 
(3.3) and (3.5) indicate that the matrix structure of the operator in (3.3) 
is essentially similar to the one in K l j y i . 

Also observe that in degree 0, equation (3.5) is equivalent to 

V . V p e - ' - l ' - ^ i A - , (3.6) / 
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which itself is equivalent to 

X X = A* <3-7) 
1 

The contribution of oj1 to equation (3.6) is in fact equal to 1. 

In ^ U b , equation (3.5) provides one of the key algebraic results from 
which one shows that in the proper sense, when c —» ±oo, the resolvent of a 
suitably conjugate version of the operator 2A\ Hc converges to the resolvent 
of \{2X. The relevant conjugation is described in " U 5 and in ^ U o 

Suppose again that F = R. Let Nv = Y^l ^e1 De the vertical number 
operator, i.e. the operator which counts the vertical degree of forms in 
fl- (T*X,TT*F). We have the identity of B 0 5 , 

rVMincr^1 = \ (~c2Av + \p\2 - en) + cNv 

c2 

- — (RTX(ei,ej)ek,ei)ele:'i^kip TLY™, (3.8) 

so that as b —> +oo, 

r t ^ ^ r l i 1 ^\\pf T LYn. (3.9) 

In the right-hand side of (3.9), there is essentially the Lie derivative operator 
^LYn. 

This should convince the reader that as when b —> +oo, the trace of the 

heat kernel exp (—tA^nc J should localize near the closed geodesies in X. 

Prom the above, we find that up to scaling, 2A2, no interpolates in a 
proper sense between the Hodge Laplacian and the geodesic flow. 

4. A self-adjointness property 

The operator A^nc is certainly not self-adjoint in the classical sense. How

ever it is shown in B U 5 that it is self-adjoint with respect to a nondegenerate 

Hermitian form of signature (oo,oo), which we now describe. 
Let gT x be the metric on the fibres of T*X which is dual to gTX. Let 

QTT x be the Riemannian metric on T*X whose matrix with respect to 
the splitting TT*X = TT* (TX © T*X) is given by 

TT*X (g I\T*X 
0 =\i\Txi<rx)- ( 4 1 ) 

The volume form attached to QTT x is the symplectic volume form dvr*x-
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Let F be the QTT'X isometric involution of TT*X whose matrix with 
respect to the above splitting is given by 

Then F acts like F~x on A" (T*T*X). 
Let ()fln-(r*x,»*F) be the Hermitian product on fi (T*X,ir*F) associ

ated to the metrics QTT x ,gF. 
Let u be the isometric involution of Q' (T*X,w*F), 

us(x,p) = Fs(x,-p). (4.3) 

Let ^(T'x^'F) b e t h e Hermitian form on tt (T*X,n*F), 

(s,s')t)n(.T*x,n*F) = (uS,s')gn-iT'x,*'F) • (4.4) 

Note here that a Hermitian form has the same properties as a Hermitian 
product, except for positivity. 

If "H is a r-invariant smooth function on T*X, if s, s' € 0 ' (T*X, n*F), 
set 

(s, s^^fT'x.^F) = (e _ 2 Ws, s^^.^ .x^.p) . (4.5) 

Note that since "H is r-invariant, \\n <n > j s si[\\ a Hermitian form. The 
Hermitian forms in (4.4), (4.5) have signature (oo, oo). 

Now we state a result established in " U 5 . 

Theorem 4.1. IfH is r-invariant, then A^-H (resp. B^n) is \)n ^ 'n ' 
self-adjoint (resp skew-adjoint), and 2 1 ^ (resp. VS^n) is t)n (T*X<**F) self-
adjoint (resp. skew-adjoint). 

Of course, Theorem 2.1 applies to the operators associated to H = Hc 

which were considered in section 2. Its implications are discussed in " U 5 

and B L°6. 

5. The analysis of the hypoelliptic Laplacian 

Now we briefly describe some results on the analysis of the operator 21? nc 

which are established in £»LUo_ One of the key results is that 2t? Hc has 
compact resolvent, that its spectrum is discrete, and that the corresponding 
characteristic subspaces are finite dimensional and included in the Schwartz 
space S(T*X,w*F). 
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Of special interest from the point of view of Hodge theory is the charac
teristic subspace S' (T*X, 7r*F)0 attached to the eigenvalue 0. The spectral 
projection provides a natural supplementary subspace S' (T*X, n*F)^ to 
S-(T*X,TT*F)0. 

Let ft (X,F) denote the ordinary cohomology of T*X when c > 0, 
and the compactly supported cohomology of T*X for c < 0. For c > 0, 
ft(X,F) = H-(X,F), and for c < 0, ft (X,F) = H~n {X,F®o(TX)), 
this last identification being the Thom isomorphism. 

In B L 0 6 , it is shown that the complex (5 ' (T*X, n*F)t, d^c
x) is acyclic, 

and that the cohomology of (5 ' (T*X, n*F)0 , d^*) is just ft (X, F). 
We will say that b > 0 is of Hodge type if all the classical consequences 

of Hodge theory hold for the hypoelliptic Laplacian 21? Hc, which means in 
particular that d^c* vanishes on S' (T*X,n*F)0. 

In ^LUo^ j{. j s shown that for b > 0 small enough, b is of Hodge type, and 
also that the set of b > 0 which are not of Hodge type is discrete. The proof 
relies in particular on the fact that classical Hodge theory is . . . of Hodge 
type, and moreover that being of Hodge type is an open property. 

Finally it is shown in ^LUb ^na^) a s explained in section 3, the resolvent 
of a suitably conjugate version of A\ nc converges in the strongest possible 
sense to the resolvent of D x / 4 , and also that the corresponding heat kernels 
converge in a very strong sense. 

6. The hypoelliptic Laplacian and analytic torsion 

Set 

\(F)=detH-(X,F). (6.1) 

Put 

A = A ( F ) i f c > 0 , (6.2) 

( A ( F ® o ( T X ) ) ) ( _ i r i f c < 0 . 

The line A can be equipped with the classical Ray-Singer metric || ||A 0, 
which one obtains via the Ray-Singer analytic torsion for the Hodge Lapla
cian Ox. 

On the other hand, for b > 0, one can define a generalized metric || A||^ b 

on A, which is obtained via the analytic torsion or A\ Wc. Its construction 
also involves the Hermitian form f)Hc ' . Contrary to an usual metric, 
this generalized metric has a sign. When the sign is positive, it is a usual 
metric. 
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The main result established in a w b is as follows. 

Theorem 6.1. For b > 0, we have the identity, 

IIIIA,6 = I H I A , O - ( 6 - 3 ) 

The proof of Theorem 6.1 is difficult. Besides the functional analytic 
machine which is needed to handle the hypoelliptic Laplacian properly, one 
also needs to develop a local index theory for this operator. It is rather 
easy to show that the generalized metric || ||A b does not depend on b > 0. 
Showing equality in (6.3) is much harder. One has to take full advantage 
of the convergence of resolvents which was described in sections 3 and 5. 

In fact equality in (6.3) should not be taken for granted. Indeed the small 
time asymptotics of the heat kernels associated to elliptic or hypoelliptic 
operators are very different. On a priori grounds, one could expect a term 
measuring the transition from the hypoelliptic regime to the elliptic one. 
In fact such a term appears when one considers the equivariant version of 
the above metrics. 

7. The hypoelliptic Laplacian and Chern-Gauss-Bonnet 

Let (E,gE,S7E) be a real Euclidean vector bundle of dimension n on a 
manifold M, which is equipped with a metric preserving connection. Let 
$ £ be the Mathai-Quillen Thorn form M Q 8 6 associated to (gE, VE). The 
Mathai-Quillen Thorn form, which is a form of degree n, will be normalized 
in such a way that if p is the generic element of E, 

$ £ = e x p ( - H 2 / 2 + . . . ) • (7.1) 

Note that the normalization in (7.1) is different from the one which is used 
in (3.4). 

Let s be a smooth section of E on M. Then s*$B is a closed n-form on 
M, whose cohomology class does not depend on s. For T > 0, set 

aT = {Ts)* $ £ . (7.2) 

Then ar is a family of closed n-forms, which lie in the same cohomology 
class. The form a0 is just the Chern form e (E, V £ ) = Pf [RE/2n] which 
appears in Chern's version of Chern-Gauss-Bonnet (-'44. By (7.1), we get 

aT = exp (-T2 |s|2 /2 + ...V (7.3) 

Equation (7.3) indicates that when T —> +oo, the current ax localizes near 
the vanishing locus Y of s. If the section s is generic, then Y is a submanifold 
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of M. One can establish that when T —> +00, ax converges as a current to 
an explicit current localized on Y. 

The strategy used by Chern ^ 4 4 to prove Chern-Gauss-Bonnet is closely 
related to the above argument. Indeed he constructs directly a transgressed 
version of the Thom form, from which the Gauss-Bonnet theorem follows 
by an argument essentially similar to the one outlined above. 

Physicists have taught us that some version of the Chern-Gauss-Bonnet 
theorem still holds in infinite dimensions, thereby establishing a connection 
between an often mathematically ill-defined functional integral and its lo
calisation on the zero set of the section of some infinite dimensional vector 
bundle, which is directly accessible to mathematical understanding. 

We will illustrate this point in the context of the Witten deformation 
of classical Hodge theory, and later explain the relevance of Chern's point 
of view to the hypoelliptic Laplacian. 

Indeed let X be a Riemannian manifold as above. We take here F 
to be just R equipped with its canonical metric. Let / : X —» R be a 
smooth function. In w ° ^ , Witten proposed a deformation of Hodge theory 
associated to the function / . Given T € R, the idea is to replace the de 
Rham operator dx by the twisted version dx = e~TfdxeTf, and to form 
the corresponding Laplacian D*. 

Observe the following simple three points: 

• For T = 0, • £ = nx. 
The operator D^ is still a second order elliptic self-adjoint nonneg-
ative operator. 

H{X,TL). 
• The Hodge theorem still holds for Ox, i.e. kerD^ still represents 

Assume that / is a Morse function. In w ° ^ , Witten showed that when 
T —> +00, most of the eigenvalues of • £ tend to +00, except a finite family 
of them which are either 0 or are exponentially small. Moreover the finite 
dimensional complex (F^, dx) of eigenforms associated to small eigenvalues 
localizes near the critical points of / , the forms of degree % localizing near 
the critical points of index i, from which the Morse inequalities immediately 
follow. 

We will not focus here on the refinements suggested by Witten concern
ing the explicit description of the complex (F^, dx) in terms of the Morse-
Smale complex associated to the gradient field —V/. The main point we 
want to make is that D^ provides an interpolation between Hodge theory 
and Morse theory. 
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When / is Morse, the gradient field V / is a generic section of TX. The 
corresponding forms ax as in (7.2) interpolate between the Chern form 

Pf and a signed sum of Dirac masses concentrated at the critical 
2TT 

points of / . 
We will briefly explain how the fact that D * interpolates between clas

sical Hodge theory and Morse theory can be interpreted as a consequence 
of the same localization principle on the loop space LX of X, which is the 
set of smooth maps s € 5 1 —> xs G X. 

We start from observations of Atiyah and Witten Aoo_ Note that LX is 
a Riemannian manifold, which inherits its Riemannian metric gTLX from 
the metric gTX. Also S1 acts isometrically on LX , so that if t £ 5 x ,x € 
LX, ktx. = x.+t- The generator of this action is the Killing vector field 
K (x) = x. The manifold X sits inside LX as the zero set of K. 

The function / lifts to the S1 -invariant function F on LX, 

F{x)= I f{xs)ds. (7.4) 

By the McKean-Singer formula McKS67) w e find t h a t i f x ^Q i s t h e 

Euler characteristic of X, then 

x ( X ) = T r s [ e x p ( - D * / 2 ) ] . (7.5) 

Using functional integration, and more specifically the theory of Brownian 
motion, we can rewrite the right-hand side of (7.5) in the form, 

Trs [exp ( -D£ /2 ) l = / dfiT. (7.6) 
JL°X 

In (7.6), /J,T is a signed measure on L°X, the set of continuous loops in X, 
which is S^-invariant. The fact that fir is carried by L°X and not by LX 
is a well-known pathology associate with functional integration. 

By using arguments developed first by Atiyah and Witten in A ° & and 
later pursued in B 8 5 ; B 8 6 , one can transform the well defined integral in 
the right-hand side of (7.6) into an ill defined integral of a current on LX. 
More specifically, we rewrite (7.6) in the form, 

Trs [exp ( -D£ /2 ) ] = / a A (TVF)* $TLX. (7.7) 
JLX 

Note that we have replaced L°X by LX for notational expediency. Let us 
briefly describe the two forms which appear in the right-hand side of (7.7). 
First they are both closed with respect to the operator d + %K, which is 
the equivariant version of the de Rham operator. Since LK = (d + %K) , 
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these forms are also ^-invariant. The vanishing under d + %K is called 
supersymmetry in the physics literature. 

Let E (x) = \ Jgl \x\2 ds be the energy functional on LX. The form a 
takes the form 

a = exp (-E + w). (7.8) 

The form w is a closed 2-form which we will not describe more precisely. 
The form $ T L X is the equivariant Thom form for TLX equipped with 

the metric gTLX, the Levi-Civita connection VTLX and the action of K. 
In view of (7.1), (7.7), (7.8), we get 

Trs [exp ( - n £ / 2 ) ] = f exp (-\ f \x\2ds-^-[ \Vf(xs)\
2ds + ... 

JLX \ Z JSl Z JS1 

(7.9) 
The point about (7.9) is that for T = 0, we get a classical Brownian 

integral which is known to be connected with the Hodge Laplacian D x / 2 . 
For T —* +oo, the integral (7.9) should localize on V / = 0. 

The above picture gives us a geometric understanding of the localization 
of the heat kernels on the diagonal near the critical points of / , of which 
the standard localization of the form ar associated with V / appears as a 
semiclassical limit, when scaling the metric gTX by a factor \/t and making 
t->0. 

Now LX carries many natural S1 functional like the energy E or more 
generally any functional 

I{x)= [ L{x,x)ds, (7.10) 

where L is a classical Lagrangian. Of course when L(x,x) = \ \x\ , then 
I = E. The idea is then to replace F by E in (7.7). More precisely consider 
a path integral of the type 

/ , 
aA(TVE)*$TLX. (7.11) 

LX 

One can ask whether there is a new Hodge theory which would extend (7.7) 
to an expression of the type (7.11). 

This is exactly what the the hypoelliptic Laplacian 2A\nc does, with 
c = ±l/b2,T = b2. Indeed in this case equation (7.9) is replaced by 

Trs [exp {-2A%tHC)} = J exp f - ± J \x\2 da-^-J M* <** + . . . ) . 

(7.12) 
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For T = 0, we should recover the classical Hodge theory for D x / 2 , and for 

T —> +00, the integral in (7.12) should localize on closed geodesies. 

The results which were described in the previous sections come as close 

as possible to fulfil this dream. 
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Some properties of Chern-Simons terms are presented and their physical utility 
is surveyed. 

1. Meeting S.S. Chern 

I first met Professor Chern in Durham, England a quarter century ago in the 
summer of 1979 at a symposium sponsored by the London Mathematical 
Society. The event brought together physicists and mathematicians because 
both discovered that after many years of separation we were again interested 
in common problems. This was a time when physicists realized that the axial 
anomaly involves the Chern-Pontryagin density, whose integral measures 
the topological properties of gauge fields; that the anomaly equation is a 
local version of the Atiyah-Singer index theorem, which in turn counts the 
number of zero modes in various linear elliptic equations, like the physicists' 
Euclidean Dirac equation 1. 

I wanted to get Chern's reaction to the fact, noted by physicists, that 
<* FF >, the axial anomaly as well as the 4-dimensional Chern-Pontryagin 
density, can be written as the 4-divergence of a 4-vector constructed from 
connections — a quantity physicists call the anomaly current. Whereupon 
he informed me of the Chern-Simons secondary characteristic class, which 
he had put forward some years earlier 2. The sobriquet "secondary charac
teristic class" seems to demote that entity to a secondary class of impor
tance. Nevertheless I was not discouraged, and with colleagues proposed 
using it, after renaming it simply and neutrally as the 3-dimensional Chern-

* Chern Memorial, Taijin China, August 2005 
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Simons term 3. The envisioned physical application was to dynamics in 3-
dimensional space-time, i.e., on a plane. This suggestion was taken up by 
many physicists for analyzing a variety of physical, planar processes (Hall 
effect, high Tc super conductivity, motion in presence of cosmic and other 
vortices). Eventually physics returned the favor to mathematics, where the 
Chern-Simons term describes knot invariants. 

Chern was happy that his secondary class found first class uses in 
physics. He thanked me for spreading the word among physicists and gave 
me an inscribed book, containing some of his relevant papers. 

Here I shall explore some further properties of Chern-Simons terms. 

2. Chern-Pontryagin/Simons Topological Entities 

We begin by recalling that the Chern-Pontryagin densities appeared in 
physics when anomalous Feynman diagrams were computed. These dia
grams carry vector indices, and formal arguments led us to expect that the 
evaluated expressions would be transverse in each index. But in fact the 
explicit expressions fail to be transverse, and the appropriate longitudinal 
part in the anomaly. In a 4-dimensional abelian gauge theory, the anomaly 
reads 

-4(4) = \ *F^ ?»> = \ ^"a0 F^ Fap, (2.1a) 

where F^ is the gauge field strength (curvature). In the non-Abelian theory 
the expression is similar, except that the gauge fields carry a Lie algebra 
index a, that is summed. 

A4) = \ V " ° F£ = \ e ^ F£ Fa% (2.1b) 

An anomaly also exists in an Abelian 2-dimensional gauge theory; it is 
simply 

A{2)=*F=1-e»»F^. (2.2) 

The anomalies are recognized to be densities, which upon integration over 
the appropriate manifold, produce the Chern-Pontryagin gauge field in
variant. Note that (2.1) and (2.2) are generally covariant densities, giving 
world scalars upon integration — no metric tensor is needed. Because of 
this metric-independence, they are topological entities, independent of lo
cal, geometric properties of the manifold. 
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Physicist usually work on open, unbounded spaces, and the integrals 
are taken over these spaces. One may imagine that the integration is per
formed over a spherical ball, with very large radius. The ball is bounded by 
its spherical surface, which passes to infinity as the radius increases without 
limit. Since the Chern-Pontryagin entities are topological, one may expect 
that they can be determined by behavior at the large-distance boundary. 
For this to be the case, it should be possible to represent these scalar den
sities as divergences of vector densities, so that by Gauss' theorem their 
volume integral can be cast onto the boundary surface (at infinity). 

Indeed this is possible, but the field strengths (curvatures) must be 
expressed in terms of potentials (connections). The Abelian formula involves 
the familiar curl, 

F^ = aM Av - dv A» (2.3) 

while the non-Abelian expression includes a non-linear term constructed 
with Lie algebra structure constraints fabc. 

F^ = dliAl-dllA
h
v + fabcAlAl (2.4) 

Inserting (2.3), (2.4) in (2.1), (2.2) exhibits the desired result. 

Abelian, 4-d: 

Ai = l*F>"'FliV = dllCS 

CI = e^^Aa d0 A1 (2.5a) 

non-Abelian, 4-d: 

M = \'F>"'aFlll = drC$ (2.5b) 

CM = £„a/37 (Aa dp A" + \ fabc Aa
a A\ AC

y) (2.5c) 

Abelian, 2-d: 

A2 = \e*vFlu, = dliC£ 

C% = e"" Av (2.6) 

The vectors CM whose divergence gives the anomalies A are called anomaly 
currents or Chern-Simons currents. 

The above is recapitulated succinctly in form notation. The anomaly or 
the Chern-Pontryagin density is a 4-form in four dimensions and a 2-form 
in two dimensions. These forms are closed, and can be presented as exact 
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forms; they are given by the exterior derivative of the Chern-Simons form, 
which is a 3-form in the former case and a 1-form in the latter. 

While the Chern-Pontryagin and the Chern-Simons forms are defined 
on even dimensional manifolds, one may restrict the latter, in a natural 
way, to one lower, odd dimensional manifold. The restriction proceeds as 
follows. Observe from (2.5) and (2.6) that the Chern-Simons/anomaly cur
rents involve a free index carried by the Levi-Civita epsilon tensor. Choose 
a definite coordinate for that index. Because of the total anti-symmetry of 
the Levi-Civita tensor, the remaining indices will not repeat the chosen, 
external index, and therefore neither will the quantities (gauge potentials, 
derivatives) comprising the Chern-Simons current. Furthermore, if all de
pendence of the potentials on the selected coordinate is suppressed, we 
are left with the so-called Chern-Simons terms, defined in odd-dimensional 
spaces. 

Abelian, 3-d: CS{A) = e^k {At dj Ak) (2.7a) 

non-Abelian, 3-d: CS(A) = eijk (A? dt A
a
k + § fabc A% A) A%) (2.7b) 

Abelian, 1-d: CS(A) = Ai (2.8) 

Evidently the Chern-Simons terms can be integrated over 3-dimensional 
or 1-dimensional spaces, thereby producing world scalars without the in
tervention of a metric tensor. Thus we again encounter topological entities. 
Some of these integrals have been known in physics and mathematics for 
a long time, as encoding interesting properties of vector fields and gauge 
fields. For example, if in (2.7a) Ai is identified with the electromagnetic 
vector potential, and eljk dj A^ with the magnetic field Bl, the integral 
defines the "magnetic helicity" / d3r A • B, which measures linkage of mag
netic flux lines. Alternatively, if Ai is the velocity vector of a fluid Vi, then 
e^k dj vk = a/ is the vorticity and the integral of (2.7a) becomes / d3r v-w; 
this is the "kinetic vorticity," which provides an obstruction to a canoni
cal formulation of fluid mechanics 4. When the non-Abelian Chern-Simons 
term is evaluated at a pure gauge connection A = g~ldg (in matrix no
tation), then the integrated Chern-Simons term involves / d3r tr(g~1dg)3, 
and evaluates the winding of the gauge function g. Moreover, it is known 
that tr(g~1dg)3 is a total derivative, so that the winding number integral 
is given by a surface term 3. 

3. Chern-Simons Terms as Total Derivatives 

The question, which this essay addresses, is whether the Chern-Simons 
terms can be expressed as total derivatives, so that their integrals over all 
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space are given by contributions from the bounding surface. 
The answer is clearly "yes" for the 1-dimensional Chern-Simons term, 

which according to (2.8) is just the single function A-\_. This can always be 
presented as the derivative of another quantity — of another "secondary" 
potential 6, 

A4 = di9 (3.1) 

so that J^°oodxAi(x) = 9(oo) — 6(—oo). 
Also in the 3-dimensional, Abelian case one can write the Chern-Simons 

term (2.7a) as a total derivative, provided the vector Ai is presented in terms 
of further, "secondary" potentials. 

Ai = di6 + adi(3 (3.2a) 

The representation (3.2a) is called the Clebsch parameterization of a 3-
vector; it involves a "gauge" part (di6) and two more scalars (a, /?), called 
Monge potentials. Altogether three functions appear; thus there is sufficient 
generality to represent the arbitrary 3-vector Ai. An analytic procedure for 
finding the Clebsch parameterization for a given vector Ai has been know 
since the 19th century. On the other hand, when (3.2a) is written in form 
notation 

A = d6 + adf3 (3.2b) 

one recognizes this as an instance of Darboux' theorem. 
With Ai parameterized in the Clebsch parameterization manner, as in 

(3.2), the Abelian Chern-Simons term indeed becomes a total derivative. 

e^k Ai di Ak = di (0eijk fya dk (3) (3.3) 

With B o r w given by V a x V / 3 , the magnetic helicity becomes 

f d3r A B = fdS-6B (3.4a) 

and similarly for the kinetic vorticity. 

/ d 3 r v . w = f dS-6w (3.4b) 

Thus the volume integral of the Abelian Chern-Simons term is found from 
the surface integral of the potentials in the Clebsch parameterization. 

This result is important for the canonical (symplectic) formulation of 
Eulerian fluid mechanics. As remarked previously the kinetic vorticity pro
vides an obstruction to a canonical formulation of that dynamical system. 
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To make progress, the obstruction must be removed. By using the Cleb-
sch parameterization for the velocity places the kinetic vorticity at spatial 
inplicity, away from the finite regions of the 3-dimensional space, and a 
canonical formulation becomes possible. That is why the Clebsch parame
terization is needed in fluid mechanincs 4. 

How about the non-Abelian, 3-dimensional Chern-Simons term? We 
have already remarked that in the special case when Ai is a pure gauge 
9~1dig, the Chern-Simons term (2.7b) is a total derivative. We shall now 
show that there exists a parameterization for arbitrary (not only pure 
gauge) non-Abelian vectors, such that their Chern-Simons term is a to
tal derivative. 

4. Mathematical Sidebar 

Before proceeding, let us reformulate our problem, and also describe work 
of Bott and Chern who posed and solved a related but different problem. 

We know that the Chern-Pontryagin entities are exterior derivatives of 
the Chern-Simons entities, as in (2.5) and (2.6). 

Chern-Pontryagin = d(Chern-Simons) (4.1) 

We have set for ourselves the problem of further demonstrating that the 
Chern-Simons quantities also are exterior derivatives of further entities. 

Chern-Simons = d{9) (4.2) 

But this also entails that 

Chern-Pontryagin = d(Chern-Simons) = ddfl = 0 (4.3) 

So our result can hold only when the anomaly, the Chern-Pontryagin den
sity, is absent. Thus if we work in three dimensions with a Chern-Simons 
3-form or in one dimension with the Chern-Simons 1-form, the Chern-
Pontryagin 4-form and 2-form are absent — they cannot be constructed. 
The Chern-Simons forms are closed because they are maximal for the con
sidered dimensionality, and it comes as no surprise that locally exact ex
pressions for them can be constructed. 

Nevertheless, we call attention to the fact that this situation for Chern-
Simons forms is different from the situation with Chern-Pontryagin forms. 
The latter are closed without regard to dimensionality, whereas the former 
are closed for dimensional reasons. 

Bott and Chern have derived a representation for the Chern-Simons 
term as a sum of (different) total derivative expressions, in the special 
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case that the field strength (curvature) satisfies a further condition 5. To 
contrast and compare with our investigation we now describe their result 
in the 4-dimensional case. 

Bott and Chern work with the two complex coordinates that can be 
constructed in four dimensions. 

(z,z) = -=(xi±ix2), (w,w) = -=(x3±ix4) (4.4) 

They further require that the holomorphic and anti-holomorphic compo
nents of the (non-Abelian) curvature FM„ vanish. 

Fzw=0 = F2iD (4.5) 

They show that then the Chern-Pontryagin density takes the form 

Chern-Pontryagin = d- (Chern-Simons) 

= d_ d+ ft, (4.6) 

which implies that 

Chern-Simons = d+ Q. + d-X-

Here d± are the holomorphic and anti-holomorphic exterior derivatives 

d+=dz§-z
+dwL (4-7) 

d- = dz— + dw—. (4.8) 
az aw 

Thus for restricted curvatures, as in (4.5), the Chern-Simons term is a 
sum of terms that are exact on the holomorphic and anti-holomorphic sub-
manifolds. 

In contrast to the Bott-Chern result, we consider the case with no re
striction on the curvature, but vanishing Chern-Pontryagin density (be
cause of dimensionality) and construct an exact (total derivative) expres
sion for the Chern-Simons term. 

5. The Result 

Our result in the non-Abelian case is not found by an analytic method, as 
is done for the Abelian case via the Clebsch parameterization. Rather we 
develop a group theoretical argument 6. To illustrate our method, we first 
apply it to the Abelian case in a rederivation of the Clebsch parameteriza
tion. 
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To deal with the U(l) (Abelian) Chern-Simons term, we begin with 
SU(2) and consider a pure gauge connection. 

A = g-1dg = Va^r, geSU(2). (5.1) 

The %£ are the anti-Hermitian matrix generators of the Lie algebra (aa = 
Pauli matrices). It follows that tr(g~1dg)3, which is known to be a total 
derivative, is given by 

tr{g~ldg)3 = ~ eabc V
aVbVc = - ^ V W 3 = total derivative. (5.2) 

Here ea\,c are the SU(2) structure constants. Also, because the non-Abelian 
connection is a pure gauge, Va obeys 

dVa = l- eabcV
bVc. (5.3) 

We define the Abelian connection, relevant to our 1/(1) problem as 

A = V3 =tri(j3g-1dg. (5.4) 

NOTE: A is not a pure gauge within U(l). It now follows that the Abelian 
Chern-Simons term satisfies the following sequence of equalities. 

CS(A) = AdA = V3dV3 = -VlV2V3 = \ tr^dg)3 (5.5) 

But the last term is known to be a total derivative, and this establishes 
that property for CS(A). 

Since g lies in SU(2), it depends on three functions, and so does V3. 
Thus there is sufficient generality to represent an arbitrary 3-dimensional 
Abelian vector At. 

It is instructive to see how this works explicitly. Parameterizing 
geSU(2)*B 

g = e£ P e^ e^6 (5.6) 

we find 

A = V3 = tria3 g~xdg = d6 + cos^d/3 

The Clebsch parameterization is regained! 
The argument for the non-Abelian Chern-Simons term proceeds in an 

analogous, but generalized manner. We seek to parameterize a connection 
1-form Aa, belonging to the Lie algebra of H, whose generators are Ta. 
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Consider a larger group G, with H as a subgroup. With g e G construct a 
pure gauge connection for G : g~1dg. The H-connection is then defined as 

Aa (xtrTag-1dg (5.7) 

Aa is not a pure gauge in H. Since an arbitrary 3-dimensional gauge poten
tial for H contains 3(dim#) components, we require dimG > 3(dimi7). 

Our goal is to show that the H-Chern-Simons term constructed from 
Aa coincides with the G-Chern-Simons term constructed from g"ldg. The 
latter involves tr(g~1dg)3 and is known to be a total derivative. The co
incidence of two then establishes that the H-Chem-Simons term also is a 
total derivative. 

The desired coincidence occurs when G/H is a symmetric space. In 
terms of the Lie algebra for H and G, this means that the generators Ta of 
H,a = l...,dimH, and the additional generators, SM, M = 1..., (dimG — 
dim .iff), which together with the Ta comprise the generators of G, must 
satisfy 

\T\Tb] = fabcT
c, (5.8a) 

[Ta,SM] = haMN SN, (5.8b) 

[SM,SN]ochaMNTa. (5.8c) 

Eqs. (5.8) record the Lie algebra of G, with (5.8a) being Lie algebra of 
H (structure constraints fabc), with (5.8b) showing that the SM provide 
a representation for that algebra, and with (5.8c) giving the closure of S-
generators on the T-generators. 

A straightforward, but tedious, sequence of manipulations then estab
lishes the coincidence of G and H Chern-Simons terms. To see them carried 
out, see the published literature 6. 

6. Conclusion 

The 3-dimensional Chern-Simons term first entered physics to provide 
a gauge-invariant mass gap for a 3-dimensional gauge theory 3. The 1-
dimensional Chern-Simons term is related to the 2-dimensional Chern-
Simons current G£ = s^ Av. It has recently been realized that the gauge 
fields in the Schwinger model — 2-dimensional electrodynamics with mass-
less fermions — can be presented solely in terms of 2-dimensional topo
logical entities: the kinetic term ~ F^F^u is just the square of the 2-
dimensional Chern-Pontryagin density; the interaction with the vector cur
rent JM, J^A^, is also given by J^C^ since the axial vector is dual to the 
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vector in 2-dimensions: Jjjg'"' = Jv. Moreover, the divergence of the axial 
vector current is anomalous and again leads to the Chern-Pontryagin den
sity. This viewpoint on the Schwinger model suggests that it can be lifted 
to any even-dimensional space-time with approximate higher dimensional 
Chern-Pontryagin densities and Chern-Simons currents coupled to anoma
lous axial vector currents. This would effect a Schwinger-model-like topo
logical mass generation in even-dimensional space-time 7. Thus it is clear 
that the Chern-Simons term continues to provide physicists with ideas for 
new physical mechanisms. 
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We describe the applications of localization methods, in particular the functo-
rial localization formula, in the proofs of several conjectures from string theory. 
Functorial localization formula pushes the computations on complicated mod
uli spaces to simple moduli spaces. It is a key technique in the proof of the 
general mirror formulas, the proof of the Hori-Vafa formulas for explicit expres
sions of basic hypergeometric series of homogeneous manifolds, the proof of the 
Marino-Vafa formula, its generalizations to two partition analogue. We will also 
discuss our development of the mathematical theory of topological vertex and 
simple localization proofs of the ELSV formula and Witten conjecture. 

1. Introduction 

According to string theorists, String Theory, as the most promising candi
date for the grand unification of all fundamental forces in the nature, should 
be the final theory of the world, and should be unique. But now there are 
five different looking string theories. As argued by physicists, these theories 
should be equivalent, in a way dual to each other. On the other hand all pre
vious theories like the Yang-Mills and the Chern-Simons theory should be 
parts of string theory. In particular their partition functions should be equal 
or equivalent to each other in the sense that they are equal after certain 
transformation. To compute partition functions, physicists use localization 
technique, a modern version of residue theorem, on infinite dimensional 
spaces. More precisely they apply localization formally to path integrals 
which is not well-defined yet in mathematics. In many cases such computa
tions reduce the path integrals to certain integrals of various Chern classes 

•The author is supported by the NSF and NSFC. 
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64 K.F. Liu 

on various finite dimensional moduli spaces, such as the moduli spaces of 
stable maps and the moduli spaces of vector bundles. The identifications of 
these partition functions among different theories have produced many sur
prisingly beautiful mathematical formulas like the famous mirror formula 
29, as well as the Marino-Vafa formula 44. 

The mathematical proofs of these conjectural formulas from the string 
duality also depend on localization techniques on these various finite dimen
sional moduli spaces. The purpose of this note is to discuss our works on 
the subject. I will briefly discuss the proof of the mirror conjecture and its 
generalizations, the proof of the Hori-Vafa formula, the proof of the Marino-
Vafa formula and its generalizations, the related topological vertex theory * 
26, and simple localization proofs of the ELSV formula and the Witten con
jecture 20. More precisely we will use localization formulas in various form to 
compute the integrals of Chern classes on moduli spaces, and to prove those 
conjectures from string duality. For the proofs of these conjectures such as 
the mirror formula, the Marino-Vafa formula and the theory of topological 
vertex, we note that many aspects of mathematics are involved, such as 
the Chern-Simons knot invariants, combinatorics of symmetric groups, rep
resentations of Kac-Moody algebras, Calabi-Yau manifolds, geometry and 
topology of moduli space of stable maps, etc. The spirit of our results is 
the duality among various string theories. In particular the duality between 
IIA and IIB string theory gives the mirror formulas, the duality between 
gauge theory, Chern-Simons theory and the Calabi-Yau geometry in string 
theory leads to the Marino-Vafa conjecture and the theory of topological 
vertex. 

Localization techniques have been very successful in proving many con
jectures from physics, see my ICM 2002 lecture 41 for more examples. The 
reason may be that physical systems always have natural symmetry which 
can be used to do localizations. One of our major tools in the proofs of these 
conjectures is the functorial localization formula which is a variation of 
the classical localization formula, it transfers computations on complicated 
spaces to simple spaces, and connects computations of mathematicians and 
physicists. 

In this note we will discuss the following results: 

1. The proof of the mirror formulas and its generalizations which we call 
the mirror principle. The mirror principle implies all of the conjectural 
mirror formulas of counting rational curves for toric manifolds and their 
Calabi-Yau submanifolds from string theory. In this case we apply the 
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functorial localization formula to the map from the nonlinear moduli 
space to the linearized moduli space. This transfers the computations of 
integrals on complicated moduli space of stable maps to computations 
on rather simple spaces like projective spaces. From this the proof of 
the mirror formula and its generalizations become conceptually clean 
and simple. 
In fact the functorial localization formula was first found and used in 
Lian-Liu-Yau's proof of the mirror conjecture. 

2. The proof of the Hori-Vafa conjecture and its generalizations for Grass-
mannian and flag manifolds. This conjecture predicts an explicit for
mula for the basic hypergeometric series of a homogeneous manifold in 
terms of the basic series of a simpler manifold such as the product of 
projective spaces. In this case we use the functorial localization formula 
twice to transfer the computations on the complicated moduli spaces 
of stable maps to the computations on quot-schemes. The first is a map 
from moduli space of stable maps to product of projective spaces, and 
another one is a map from the quot-scheme into the same product of 
projective spaces. A key observation we had is that these two maps 
have the same image. 

This approach was first sketched in 31, the details for Grassmannians 
were carried out in 28 and 3. The most general case of flag manifolds 
was carried out in 35 and 4. 

3. The proof of the Marino-Vafa conjecture on Hodge integrals in 38. This 
conjecture gives a closed formula for the generating series of a class of 
triple Hodge integrals for all genera and any number of marked points in 
terms of the Chern-Simons knot invariant of the unknot. This formula 
was conjectured by M. Marino and C. Vafa in 44 based on the duality 
between large N Chern-Simons theory and string theory. Many Hodge 
integral identities, including the ELSV formula for Hurwitz numbers 8 

and the Xg conjecture 10, can be obtained by taking various limits of 
the Marino-Vafa formula 39. The Marino-Vafa formula was first proved 
by applying the functorial localization formula to the branch morphism 
from the moduli space of relative stable maps to a projective space. 

4. The proof of the generalization of the Marino-Vafa formula to two par
titions cases, and the theory of topological vertex. The mathematical 
theory of topological vertex was motivated by the physical theory as 
first developed by the Vafa group l, who has been working on string du
ality for the past several years. Topological vertex theory is a high point 
of their work starting from their geometric engineering theory and Wit-
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ten's conjecture that Chern-Simons theory is a string theory 50. While 
the Marino-Vafa formula gives a close formula for the generating se
ries of triple Hodge integrals on the moduli spaces of all genera and 
any number marked points, topological vertex 26 gives the most effec
tive ways to compute the Gromov-Witten invariants of any open toric 
Calabi-Yau manifolds. Recently Pan Peng was able to use our results 
on topological vertex to give a complete proof of the Gopakumar-Vafa 
integrality conjecture for any open toric Calabi-Yau manifolds 48. Kim 
also used our technique to derive new effective recursion formulas for 
Hodge integrals on the moduli spaces of stable curves 18. 

5. We describe a very simple proof of the ELSV formula 8 following our 
proof of the Marino-Vafa formula, by using the cut-and-join equation 
from localization and combinatorics. The proof of the ELSV formula 
is particularly easy by using functorial localization, it is reduced to 
the fact that the push-forward in equivariant cohomology of a constant 
between two equal dimensional varieties is still constant. We will also 
show how to directly derive the ELSV formula from the Marino-Vafa 
formula by taking a scaling limit. 

6. By using functorial localization formula we have the simple proofs of 
the Witten conjecture 20. Our simple proof of the Witten conjecture 
in 19 is to study the asymptotic expansion of the simple cut-and-join 
equation for one Hodge integrals which is derived from functorial lo
calization. This immediately gives a recursion formula which implies 
both the Virasoro constraints and the KdV relation satisfied by the 
generating series of the ip integrals. 

I will start with brief discussions about the proofs of the mirror conjec
ture and the Hori-Vafa formula for Grassmannians, then I will go to the 
proofs of the Marino-Vafa conjecture and its generalizations to two parti
tions and the topological vertex theory. After that we discuss the simple 
proofs of the ELSV formula and the Witten conjecture. This note is partly 
based on my plenary lecture at the International Conference of Differen
tial Geometry Method in Theoretical Physics held in August 2005. It is 
an much more expanded version of a previous survey I wrote for the 2004 
International Complex Geometry Conference held in the Eastern Normal 
University of China. This survey is intended for readers from physics and 
from other fields of mathematics. The materials on mirror conjectures and 
the Hori-Vafa formulas were taken from a previous survey of Chien-Hao 
Liu, Shing-Tung Yau and myself written for the Gelfand symposium. Our 
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purpose to combine the discussions together is to give the reader a more 
complete picture about the applications of localization techniques in solving 
conjectures from string duality. I hope this note has accomplished this goal. 
I would like to thank the organizers of the conferences, especially Professor 
Chengming Bai, Professor Shengli Tan, Professor Weiping Zhang and Pro
fessor Zhijie Chen for their hospitality during my visits. I would also like to 
thank my collaborators for the past 10 years, Bong Lian, Shing-Tung Yau, 
Chien-Hao Liu, Melissa C.-C. Liu, Jian Zhou, Jun Li, Yon Seo Kim for the 
wonderful experience in solving these conjectures and to develop the theory 
together. 

2. Localization 

In this section we will explain the Functorial Localization Formula. We 
start with a review of the Atiyah-Bott localization formula. Recall that the 
definition of equivariant cohomology group for a manifold X with a torus 
T action: 

H}(X) = H*(XxTET) 

where ET is the universal bundle of T, we will use R or Q as coefficients 
through this note. 

Example We know ES1 = S°°. If S1 acts on P " by 

\-{Z0,...,Zn] = {\w°Z0,...,\
w"Zn], 

with wo, • • • , wn as weights, then 

H'Si (P n ; Q) = Q[H, u}/((H - w0u) • • • (ff - wnu)) 

where u is the generator of H*(BS1,Q). We have the following important 
Atiyah-Bott Localization Formula: 

Theorem 2 .1 . 
For u> £ H^{X) an equivariant cohomology class, we have 

E ( * F W A 

B '*' {eMEjT)) • 
where E runs over all connected components of T fixed points set, is de
notes the inclusion map, i*E IE* denote the pull-back and push-forward in 
equivariant cohomology. 
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This formula is very effective in the computations of integrals on man
ifolds with torus T symmetry. The idea of localization is fundamental in 
many subjects of geometry. In fact Atiyah and Witten proposed to formally 
apply this localization formula to loop spaces and the natural 51-action, 
from which one gets the Atiyah-Singer index formula. In fact the Chern 
characters can be interpreted as equivariant forms on loop space, and the 
A-class is the inverse of the equivariant Euler class of the normal bundle of 
X in its loop space LX: 

eriX/LX)-1 ~ A(X), 

which follows from the normalized infinite product formula 

I observed in 42 that the normalized product 

oo 

Y[(x + m + nr) = 2q* ain(nx) • FJ(1 - ^')(1 - e27rixqj)(l - e~ 2 7 r iV), 
m, n j—1 

where q = e27nr , also has deep geometric meaning. This formula is the 
Eisenstein formula. It can be viewed as a double loop space analogue of the 
Atiyah-Witten observation. This formula gives the basic Jacobi ^-function. 
As observed by in 42, formally this gives the A-class of the loop space, and 
the Witten genus which is defined to be the index of the Dirac operator on 
the loop space: 

eT(X/LLX) ~ W(X), 

where LLX is the double loop space, the space of maps from S1 x S1 into 
X. W{X) is the Witten class. See 42 for more detail. 

The variation of the localization formula we will use in various situations 
is the following Functorial Localization Formula 

Theorem 2.2. Let X and Y be two manifolds with torus action. Let f : 
X —> Y be an equivariant map. Given F C Y a fixed component, let E c 
f~1(F) be those fixed components inside / _ 1 ( F ) . Let /o = J\E, then for 
UJ € H^,{X) an equivariant cohomology class, we have the following identity 
on F: 

i*Ew i*F(f*w) 
JO*[eT(E/Xy eT(F/Y)-
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This formula will be applied to various settings to prove various con
jectures from physics. It first appeared in 29. In many cases we will use a 
virtual version of this formula. It is used to push computations on compli
cated moduli spaces to simpler moduli spaces. A if-theory version of the 
functorial localization formula also holds 30, interesting applications are 
expected. 

Remark Consider the diagram: 

H^{X) - ^ H$(Y) 

H^(E) ^ H^{F). 

The functorial localization formula is like Riemann-Roch with the inverted 
equivariant Euler classes of the normal bundle as " weights", in a way similar 
to the Todd class for the Riemann-Roch formula. In fact if we formally apply 
this formula to the map between the loop spaces of X and Y, equivariant 
with respect to the rotation of the circle, we do formally get the differen-
tiable Riemann-Roch formula. We believe this can be done rigorously by 
following Bismut's proof of the index formula which made rigorous of the 
above argument of Atiyah-Witten. 

3. The Mirror Principle 

There have been many discussions of mirror principle in the literature. Here 
we only give a brief account of the main ideas of the setup and proof of the 
mirror principle. We will use two most interesting examples to illustrate 
the algorithm. These two examples give proofs of the mirror formulas for 
toric manifolds as conjectured by string theorists. 

The goal of mirror principle is to compute the characteristic numbers 
on moduli spaces of stable maps in terms of certain hypergeometric type 
series. This was motivated by mirror symmetry in string theory. The most 
interesting case is the counting of the numbers of curves which corresponds 
to the computations of Euler numbers. More generally we would like to 
compute the characteristic numbers and classes induced from the general 
Hirzebruch multiplicative classes such as the total Chern classes. The com
putations of integrals on moduli spaces of those classes pulled back through 
evaluation maps at the marked points and the general Gromov-Witten in
variants can also be considered as part of mirror principle. Our hope is to 
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develop a "black-box" method which makes easy the computations of the 
characteristic numbers and the Gromov-Witten invariants. 

The general set-up of mirror principle is as follows. Let X be a projective 
manifold, M9ik(d, X) be the moduli space of stable maps of genus g and 
degree d with k marked points into X, modulo the obvious equivalence. 
The points in M9lk(d, X) are triples (/; C; x\, • • • , Xk) where / : C —> X 
is a degree d holomorphic map and x\, • • • ,Xk are k distinct smooth points 
on the genus g curve C. The homology class /*([C]) = d e H2(X,Z) is 
identified as integral index d = (d\, • • • , dn) by choosing a basis ofH2(X, Z), 
dual to the Kahler classes. 

In general the moduli space may be very singular, and may even have 
different dimension for different components. To define integrals on such 
singular spaces, we need the virtual fundamental cycle of Li-Tian 25, and 
also Behrend-Fantechi 5 which we denote by [Mgik{d, X)]v. This is a ho
mology class of the expected dimension 

2 (ci(TX) [d] + (dime X-3)(l-g) + k) 

on M9tk(d,X). 
Let us consider the case k = 0 first. Note that the expected dimension 

of the virtual fundamental cycle is 0 if X is a Calabi-Yau 3-fold. This is the 
most interesting case for string theory. 

The starting data of mirror principle are as follows. Let V be a 
concavex bundle on X which we defined as the direct sum of a posi
tive and a negative bundle on X. Then V induces a sequence of vector 
bundles V% on Aigfi(d,X) whose fiber at (f;C;xi,--- ,Xk) is given by 
H°{C, f*V)®H1(C, f*V). Let b be a multiplicative characteristic class. So 
far for all applications in string theory, b is the Euler class. 

The problem of mirror principle is to compute 

K3
d = I KVi). 

J[Mg,0(d,X)Y 

More precisely we want to compute the generating series 

F{T,\) = Y,KdX9edT 

d,g 

in terms of certain hypergeometric type series. Here A, T = (T\, • • • ,, Tn) 
are formal variables. 

The most famous formula in the subject is the Candelas formula as 
conjectured by P. Candelas, X. de la Ossa, P. Green, and L. Parkes 6. 
This formula changed the history of the subject. More precisely, Candelas 
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formula considers the genus 0 curves, that is, we want to compute the so-
called A-model potential of a Calabi-Yau 3-fold M given by 

d€H2(M;Z) 

where T = ( 7 i , . . . , T n ) are considered as the coordinates of the Kahler 
moduli of M, and K^ is the genus zero, degree d invariant of M which 
gives the numbers of rational curves of all degree through the multiple 
cover formula 29. The famous mirror conjecture asserts that there exists a 
mirror Calabi-Yau 3-fold M' with B-model potential G(T), which can be 
computed by period integrals, such that 

HT) = Q{t), 

where t accounts for coordinates of complex moduli of M'. The map 11—> T 
is called the mirror map. In the toric case, the period integrals are explicit 
solutions to the GKZ-system, that is the Gelfand-Kapranov-Zelevinsky hy-
pergeometric series. While the A-series are usually very difficult to compute, 
the B-series are very easy to get. This is the magic of the mirror formula. 
We will discuss the proof of the mirror principle which includes the proof 
of the mirror formula. 

The key ingredients for the proof of the mirror principle consists of 

(1) Linear and non-linear moduli spaces; 
(2) Euler data and hypergeometric (HG) Euler data. 

More precisely, the non-linear moduli is the moduli space M^{X) which 
is the stable map moduli of degree (1, d) and genus g into P ' x I . A point 
in M%(X) consists of a pair (/, C) : / : C —> P 1 x X with C a genus g 
(nodal) curve, modulo obvious equivalence. The linearized moduli Wd for 
toric X were first introduced by Witten and used by Aspinwall-Morrison 
to do approximating computations. 

Example Consider the projective space P " with homogeneous coordinate 
[zo, • • • ,zn]. Then the linearized moduli Wd is defined as projective space 
with coordinates 

[fo(w0,Wl),--- , / n ( w o , W l ) ] 

where fj(wo,wiys are homogeneous polynomials of degree d. 
This is the simplest compactification of the moduli spaces of degree d 

maps from P 1 into P n . The following lemma is important. See 32 for its 
proof. The g = 0 case was given in n and in 29. 
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Lemma 3.1. There exists an explicit equivariant collapsing map 

<p: M°(Pn)^Wd. 

For general projective manifold X, the nonlinear moduli M%(X) can 
be embedded into M | ( P n ) . The nonlinear moduli M^(X) is very "sin
gular" and complicated, but the linear moduli Wd is smooth and simple. 
The embedding induces a map of M%(X) to Wd- Functorial localization 
formula pushed the computations onto Wd- Usually mathematical compu
tations should be done on the moduli of stable maps, while physicists tried 
to use the linearized moduli to approximate the computations. So functo
rial localization formula connects the computations of mathematicians and 
physicists. In some sense the mirror symmetry formula is more or less the 
comparison of computations on nonlinear and linearized moduli. 

Mirror principle has been proved to hold for balloon manifolds. A pro
jective manifold X is called balloon manifold if it admits a torus action 
with isolated fixed points, and if the following conditions hold. Let 

H = (Hi, • • • ,Hk) 

be a basis of equivariant Kahler classes such that 

(1) the restrictions H(p) ^ H(q) for any two fixed points p ^ q; 
(2) the tangent bundle TpX has linearly independent weights for any fixed 

point p. 

This notion was introduced by Goresky-Kottwitz-MacPherson. 

Theorem 3.1. Mirror principle holds for balloon manifolds and for any 
concavex bundles. 

Remarks 

1. All toric manifolds are balloon manifolds. For g = 0 we can identify the 
hypergeometric series explicitly. Higher genus cases need more work to 
identify such series. 

2. For toric manifolds and g = 0, mirror principle implies all of the mirror 
conjectural formulas from string theory. 

3. For Grassmannian manifolds, the explicit mirror formula is given by 
the Hori-Vafa formula to be discussed in Section 4. 

4. The case of direct sum of positive line bundles on P n , including the 
Candelas formula, has two independent approaches by Givental, and 
by Lian-Liu-Yau. 
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Now we briefly discuss the proof of the mirror principle. The main idea 
is to apply the functorial localization formula to ip, the collapsing map and 
the pull-back class w = 7r*6(Vr

£f), where n : M%(X) —> Mgfl(d,X) is the 
natural projection. 

Such classes satisfy certain induction property. To be precise we intro
duce the notion of Euler Data, which naturally appears on the right hand 
side of the functorial localization formula, Qd = f\(TT*b(V^)) which is a 
sequence of polynomials in equivariant cohomology rings of the linearized 
moduli spaces with simple quadratic relations. We also considered their 
restrictions to X. 

Prom functorial localization formula we prove that, by knowing the Eu
ler data Qd we can determine the K9

d. On the other hand, there is another 
much simpler Euler data, the HG Euler data Pd, which coincides with Qd 
on the "generic" part of the nonlinear moduli. We prove that the quadratic 
relations and the coincidence on generic part determine the Euler data 
uniquely up to certain degree. We also know that Qd always have the right 
degree for g = 0. We then use mirror transformation to reduce the degrees 
of the HG Euler data Pd- From these we deduced the mirror principle. 

Remarks 

1. Both the denominator and the numerator in the HG series, the generat
ing series of the HG Euler data, are equivariant Euler classes. Especially 
the denominator is exactly from the localization formula. This is easily 
seen from the functorial localization formula. 

2. The quadratic relation of Euler data, which naturally comes from gluing 
and functorial localization on the A-model side, is closely related to spe
cial geometry, and is similar to the Bershadsky-Cecotti-Ooguri-Vafa's 
holomorphic anomaly equation on the B-model side. Such relation can 
determine the polynomial Euler data up to certain degree. 
It is an interesting task to use special geometry to understand the mir
ror principle computations, especially the mirror transformation as a 
coordinate change. 

3. The Marino-Vafa formula to be discussed later is needed to determine 
the hypergeometric Euler data for higher genus computations in mirror 
principle. The Marino-Vafa formula comes from the duality between 
Chern-Simons theory and Gromov-Witten theory. This duality and the 
matrix model for Chern-Simons theory indicate that mirror principle 
may have matrix model description. 
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Let us use two examples to illustrate the algorithm of mirror principle. 

Example Consider the Calabi-Yau quintic in P 4 . In this case 

5d 

Pd = \ \ (5K - ma) 
m=0 

with a can be considered as the weight of the 5 1 action on P 1 , and K 
denotes the generator of the equivariant cohomology ring of Wd-

The starting data of the mirror principle in this case is V = 0(5) on 
X = P 4 . The hypergeometric series, after taking a = — 1, is given by 

HG[B}(t) = e ^ ± ^ r ^ H + m) dt^ 

d=oUm=i(H + m)5 

where H is the hyperplane class on P 4 and t is a formal parameter. 
We introduce the series 

f(T) = lT* + Y,K°de
d 

<^dc 

d>0 

The algorithm is as follows. Take the expansion in H: 

HG[B](t) = H{f0(t) + h(t)H + f2{t)H2 + f3(t)H
3}, 

from which we have the famous Candelas Formula: With T = fi/fo, 

T(T\ — -(llll — ll} 
[)~2[f0f0 / 0

j -

Example Let X be a toric manifold and g — 0. Let DI , . . ,£>JV be the 
T-invariant divisors in X. The starting data consist of V — ©jLj with 
ci(Li) > 0 and a(X) = c\{V). Let us take b(V) = e(V) the Euler class. 
We want to compute the A-series 

A(T)=J2K*e d-T 

The HG Euler series which is the generating series of the HG Euler data 
can be easily written down as 

(Cl(Li),d) n yr-(Da,d)-l(D , k ) ««)=.-*•• s n n c w - * ) 1 ^ ^ " ^ ' k ' « " • 
d i k=0 l l<£»o ,d>>0llfc=l \Ua K! 
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Then mirror principle implies that there are explicitly computable func
tions f(t),g(t), which define the mirror map, such that 

j x (efB(t) - e-"Te(V)) = 2A(T) - $ > ^ P 

where T = t + g(t). Prom this equation we can easily solve for A(T). 
In general we want to compute: 

KU = I n ™>i • w > 
J[Mg,k{d,X)Y j=l 

where UJ £ H*(X) and evj denotes the evaluation map at the j - th marked 
point. We form a generating series with t, A and v formal variables, 

d,g,k 

The ultimate mirror principle we want to prove is to compute this series 
in terms of certain explicit HG series. It is easy to show that those classes 
in the integrand can still be combined to induce Euler data. Actually the 
Euler data really encode the geometric structure of the stable map moduli. 

We only use one example to illustrate the higher genus mirror principle. 

Example Consider open toric Calabi-Yau manifold, say 0(—3) —> P 2 . 
Here V = 0(-3). Let 

Qd = I > ( 7 r * e r ( ^ ) ) A 2 » . 

Then it can be shown that the corresponding HG Euler data is given ex
plicitly by 

Pd J(K, a, A) J(K — da, —a, A), 

where Pd is exactly the genus 0 HG Euler data and J is generating series 
of Hodge integrals with summation over all genera. J may be considered as 
the degree 0 Euler data. In fact we may say that the computations of Euler 
data include computations of all Gromov-Witten invariants, and even more. 
Zhou has obtained some closed formulas. We have proved that the mirror 
principle holds in such general setting. The remaining task is to determine 
the explicit HG Euler data. But the recently developed topological vertex 
theory has given complete closed formulas for all open toric Calabi-Yau 
manifolds in terms of the Chern-Simons invariants. See the discussion in 
Section 7 for details. 
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Finally we mention some recent works. First we have constructed re
fined linearized moduli space for higher genus, the A-twisted moduli stack 
AMg(X) of genus g curves associated to a smooth toric variety X, induced 
from the gauged linear sigma model studied by Witten. 

This new moduli space is constructed as follows. A morphism from 
a curve of genus g into X corresponds to an equivalence class of triples 
(Lp,up ,cm)p ) m , where each Lp is a line bundle pulled back from X, up is 
a section of Lp satisfying a non-degeneracy condition, and the collection 
{cm}m gives conditions to compare the sections up in different line bundles 
Lp, AMg(X) is the moduli space of such data. It is an Artin stack, fibered 
over the moduli space of quasi-stable curves 34. We hope to use this refined 
moduli to do computations for higher genus mirror principle. 

On the other hand, motivated by recent progresses in open string theory, 
we are also trying to develop open mirror principle. Open string theory pre
dicts formulas for the counting of holomorphic discs with boundary inside 
a Lagrangian submanifold, more generally of the counting of the numbers 
of open Riemann surfaces with boundary in Lagrangian submanifold. Lin
earized moduli space for such data is being constructed which gives a new 
compactification of such moduli spaces. 

4. The Hori-Vafa Formula 

In 15, Hori and Vafa generalize the world-sheet aspects of mirror symmetry 
to being the equivalence of d = 2, N = (2, 2) supersymmetric field theories 
(i.e. without imposing the conformal invariance on the theory). This leads 
them to a much broader encompassing picture of mirror symmetry. Putting 
this in the frame work of abelian gauged linear sigma models (GLSM) of 
Witten enables them to link many d = 2 field theories together. Gener
alization of this setting to nonabelian GLSM leads them to the following 
conjecture, when the physical path integrals are interpreted appropriately 
mathematically: 

Conjecture 4.1. The hypergeometric series for a given homogeneous space 
(e.g. a Grassmannian manifold) can be reproduced from the hypergeomet
ric series of simpler homogeneous spaces (e.g. product of projective spaces). 
Similarly for the twisted hypergeometric series that are related to the sub-
manifolds in homogeneous spaces. 

In other words, different homogeneous spaces (or some simple quotients 
of them) can give rise to generalized mirror pairs. A main object to be un
derstood in the above conjecture is the fundamental hypergeometric series 
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HG[l]x(t) associated to the flag manifold X. Recall that in the computa
tions of mirror principle, the existence of linearized moduli made easy the 
computations for toric manifolds. 

An outline of how this series may be computed was given in 31 via an 
extended mirror principle diagram. To make clear the main ideas we will 
only focus on the case of Grassmannian manifolds in this article. The main 
problem for the computation is that there is no known good linearized mod
uli for Grassmannian or general flag manifolds. To overcome the difficulty 
we use the Grothendieck quot scheme to play the role of the linearized 
moduli. The method gives a complete proof of the Hori-Vafa formula in the 
Grassmannian case. 

Let ev : Mo,i(d,X) —> X be the evaluation map on the moduli space 
of stable maps with one marked point, and c the first Chern class of the 
tangent line at the marked point. The fundamental hypergeometric series 
for mirror formula is given by the push-forward: 

ev.[ l Jeg'(X) 
a(a — c) 

or more precisely the generating series 

HG[l]x{t)=e-'"'°^e».[-^±—}t*. 

Assume the linearized moduli exists. Then functorial localization for
mula applied to the collapsing map: <p : Md —> Nd, immediately gives the 
expression as the denominator of the hypergeometric series. 

Example X = P™, then we have <p*(l) = 1, functorial localization imme
diately gives us 

* a(a-c)s Udm=i(x ~ ma)n+1 

where the denominators of both sides are equivariant Euler classes of normal 
bundles of the fixed points. Here x denotes the hyperplane class. 

For X = Gr(k, n) or general flag manifolds, no explicit linearized moduli 
is known. Hori-Vafa conjectured a formula for HG[l]x(t) by which we can 
compute this series in terms of those of projective spaces which is the Hori-
Vafa formula for Grassmannians: 
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Theorem 4.2. We have 

HG[l]GT{k'n\t) = 
lli<j\xi xj) 

ffG[l]p(ti,-..,tfc) 
i<3 j t i =t+(fe- l )7rV = l 

where P = P n _ 1 x • • • x p n _ 1 is product ofk copies of the projective spaces, 
a is the generator of the divisor classes on Gi(k, n) and Xi the hyperplane 
class of the i-th copy P " - 1 : 

k 

FG[i]p(i l ! . . . ,^)=n^G[ i]p n"1( t ')-

Now we describe the ideas of the proof of the above formula. As men
tioned above we use another smooth moduli space, the Grothendieck quot-
scheme Qd to play the role of the linearized moduli, and apply the functorial 
localization formula. Here is the general set-up: 

To start, note that the Pliicker embedding r : Gr(/c,n) —> PN induces 
an embedding of the nonlinear moduli Md of Gr(k,n) into that of PN. 
Composite of this map with the collapsing map gives us a map <p : Md —> 
Wd into the linearized moduli space Wd of PN. On the other hand the 
Pliicker embedding also induces a map ^ : Qd —* Wd- We have the following 
three crucial lemmas proved in 28. 

Lemma 4.1. The above two maps have the same image in Wd: Imip = 
Imtp. And all the maps are equivariant with respect to the induced circle 
action from P 1 . 

Just as in the mirror principle computations, our next step is to analyze 
the fixed points of the circle action induced from P 1 . In particular we need 
the distinguished fixed point set to get the equivariant Euler class of its 
normal bundle. The distinguished fixed point set in Md is Mo,i(d, Gr(fc, n)) 
with equivariant Euler class of its normal bundle given by a (a — c), and we 
know that (p is restricted to ev. 

Lemma 4.2. The distinguished fixed point set in Qd is a union: UsEos, 
where each EQS is a fiber bundle over Gr(fe, n) with fiber given by flag man
ifold. 

It is a complicated work to determine the fixed point sets EQS and the 
weights of the circle action on their normal bundles. The situation for flag 
manifold cases are much more involved. See 28 and 35 for details. 
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Now let p denote the projection from Eos onto Gr(fc,n). Functorial 
localization formula, applied to ip and ip, gives us the following 

Lemma 4.3. We have the equality on Gr(k,N): 

eV*[c^T)] = y£P*{eT(E0s/Qd)
] 

where eriEos/Qd) is the equivariant Euler class of the normal bundle of 

E0s inQd-

Finally we compute P*[e IE* /o )]• There are two different approaches, 
the first one is by direct computations in 28, and another one is by using 
the well-known Euler sequences for universal sheaves 3. The second method 
has the advantage of being more explicit. Note that 

eT(TQ\Eo8 - TE0s) = eT(TQ\Eo3)/eT(TE0s). 

Both eT{TQ\E0s) and eriTEos) can be written down explicitly in terms 
of the universal bundles on the flag bundle EQS — Fl{m\, • • • , irik, S) over 
Gr(r, n). Here S is the universal bundle on the Grassmannian. 

The push-forward by p from Fl(mi,- • • , mk, S) to Gr(r, n) is done by 
an analogue of family localization formula of Atiyah-Bott, which is given 
by a sum over the Weyl groups along the fiber which labels the fixed point 
sets. 

In any case the final formula of degree d is given by 

P eT(E0s/Qd) 

_ (_-,\(r-l)d ST^ \ll<i<j<r\Xi ~ x3 + (°» ~ ° j ) a ) 

(„",,., ni<i<j<r(?i-xj)iri=ii]ti(.*i+i<*)n' 
d\-\-,..-\-dr=d 

Here the Chern roots of S*. As a corollary of our approach, we 
have the following: 

Corollary 4.3. The Hori-Vafa conjecture holds for Grassmannian mani
folds. 

This corollary was derived in 3 by using the idea and method and also the 
key results in 28. For the explicit forms of Hori-Vafa conjecture for general 
flag manifolds, see 35 and 4. 
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5. The Marino-Vafa Conjecture 

Our original motivation to study Hodge integrals was to find a general mir
ror formula for counting higher genus curves in Calabi-Yau manifolds. To 
generalize mirror principle to count the number of higher genus curves, we 
need to first compute Hodge integrals, i.e. the intersection numbers of the A 
classes and ip classes on the Deligne-Mumford moduli space of stable curves 
M.g,h- This moduli space is possibly the most famous and most interesting 
orbifold. It has been studied since Riemann, and by many Fields medal
ists for the past 50 years, from many different point of views. Still many 
interesting and challenging problems about the geometry and topology of 
these moduli spaces remain unsolved. String theory has motivated many 
fantastic conjectures about these moduli spaces including the famous Wit-
ten conjecture which is about the generating series of the integrals of the 
V'-classes. We start with the introduction of some notations. 

Recall that a point in M9th consists of (C, x\,..., Xh), a (nodal) curve 
C of genus g, and n distinguished smooth points on C. The Hodge bundle 
E is a rank g vector bundle over Mg,h whose fiber over [(C,x\,... ,Xh)] is 
H°(C,UJC), the complex vector space of holomorphic one forms on C. The 
A classes are the Chern Classes of E, 

\ i = ci(E)£H2i(Mg,h;Q). 

On the other hand, the cotangent line T*.C of C at the i-th marked 
point Xi induces a line bundle L, over Mg,h- The ip classes are the Chern 
classes: 

iPi = c1(Li)£H2(Mg,h;Q). 

Introduce the total Chern class 

A*(u) = v? - Ajw3"1 + • • • + {-l)9Xg. 

The Marino-Vafa formula is about the generating series of the triple 
Hodge integrals 

r AV( l )A g
v ( r )AV(- r - l ) ; 

JMg,h riiLiC1 -MtV'i) 

where T is considered as a parameter here. Later we will see that it actually 
comes from the weight of the group action, and also from the framing of the 
knot. Taking Taylor expansions in T or in ^ one can obtain information 
on the integrals of the Hodge classes and the ^-classes. The Marino-Vafa 
conjecture asserts that the generating series of such triple Hodge integrals 
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for all genera and any numbers of marked points can be expressed by a close 
formula which is a finite expression in terms of representations of symmetric 
groups, or Chern-Simons knot invariants. 

We remark that the moduli spaces of stable curves have been the sources 
of many interests from mathematics to physics. Mumford has computed 
some low genus numbers. The Witten conjecture, proved by Kontsevich 20, 
is about the integrals of the ip-c\asses. 

Let us briefly recall the background of the conjecture. Marino and Vafa 
44 made this conjecture based on the large N duality between Chern-Simons 
and string theory. It starts from the conifold transition. We consider the 
resolution of singularity of the conifold X defined by 

XV\&Ci:xw-yz = Q 
^ z w J 

in two different ways: 
(1). Deformed conifold T*53 

x y \ 1-.4 
E C : xw — yz = e 

z w J 

where e a real positive number. This is a symplectic resolution of the sin
gularity. 

(2). Resolved conifold by blowing up the singularity, which gives the 
total space 

X = O(-l) ® O(-l)-> P1 

which is explicitly given by 

K 24") ) e p l x c 4 _ (x ,y )€ [ZQ,Zi] 

( z , « 0 e [ Z o , Z i ] 

I c P ' x C 4 

I I 
X c C 4 

The brief history of the development of the conjecture is as follows. In 
1992 Witten first conjectured that the open topological string theory on the 
deformed conifold T*S3 is equivalent to the Chern-Simons gauge theory on 
S3. Such idea was pursued further by Gopakumar and Vafa in 1998, and 
then by Ooguri and Vafa in 2000. Based on the above conifold transition, 
they conjectured that the open topological string theory on the deformed 
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conifold T*S3 is equivalent to the closed topological string theory on the 
resolved conifold X. Ooguri-Vafa only considered the zero framing case. 
Later Marino-Vafa generalized the idea to the non-zero framing case and 
discovered the beautiful formula for the generating series of the triple Hodge 
integrals. Recently Vafa and his collaborators systematically developed the 
theory, and for the past several years, they developed these duality ideas 
into the most effective tool to compute Gromov-Witten invariants on toric 
Calabi-Yau manifolds. The high point of their work is the theory of topo
logical vertex. We refer to 44 and 1 for the details of the physical theory 
and the history of the development. 

Starting with the proof of the Marino-Vafa conjecture 38, 39, we have 
developed a rather complete mathematical theory of topological vertex 26. 
Many interesting consequences have been derived for the past year. Now 
let us see how the string theorists derived mathematical consequence from 
the above naive idea of string duality. First the Chern-Simons partition 
function has the form 

{Z(U,V))=exp(-F(\,t,V)) 

where U is the holonomy of the U(N) Chern-Simons gauge field around 
the knot K c S3, and V is an extra U(M) matrix. The partition function 
(Z(U, V)) gives the Chern-Simons knot invariants of K. 

String duality asserts that the function F(X, t, V) should give the gener
ating series of the open Gromov-Witten invariants of (X, LK), where LK is 
a Lagrangian submanifold of the resolved conifold X canonically associated 
to the knot K. More precisely by applying the t'Hooft large N expansion, 
and the "canonical" identifications of parameters similar to mirror formula, 
which at level k are given by 

2TT _ 2niN 

we get the partition function of the topological string theory on conifold X, 
and then on P 1 . which is just the generating series of the Gromov-Witten 
invariants. This change of variables is very striking from the point of view 
of mathematics. 

The special case when K is the unknot is already very interesting. In 
non-zero framing it gives the Marino-Vafa conjectural formula. In this case 
{Z(U, V)) was first computed in the zero framing by Ooguri-Vafa and in 
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any framing T 6 Z b y Marino-Vafa 44. Comparing with Katz-Liu's com
putations of F(X, t, V) in 17, Marino-Vafa conjectured the striking formula 
about the generating series of the triple Hodge integrals for all genera and 
any number of marked points in terms of the Chern-Simons invariants, or 
equivalently in terms of the representations and combinatorics of symmet
ric groups. It is interesting to note that the framing in the Marino-Vafa's 
computations corresponds to the choice of lifting of the circle action on the 
pair (X, Lunknot) in Katz-Liu's localization computations. Both choices are 
parametrized by an integer T which will be considered as a parameter in 
the triple Hodge integrals. Later we will take derivatives with respect to 
this parameter to get the cut-and-join equation. 

It is natural to ask what mathematical consequence we can have for 
general duality, that is for general knots in general three manifolds, a first 
naive question is what kind of general Calabi-Yau manifolds will appear in 
the duality, in place of the conifold. Some special cases corresponding to 
the Seifert manifolds are known by gluing several copies of conifolds. 

Now we give the precise statement of the Marino-Vafa conjecture, which 
is an identity between the geometry of the moduli spaces of stable curves 
and Chern-Simons knot invariants, or the combinatorics of the representa
tion theory of symmetric groups. 

Let us first introduce the geometric side. For every partition {i = (/xi > 
• • • ^i(ii) > 0), we define the triple Hodge integral to be, 

Gg>li(T) = A(r) • [_ 

where the coefficient 

A g
v ( l )AV(-r- l )AV(r) 

AM = - ^ \T(T + l)}1^-1 U n a = i (»iT + a) 

The expressions, although very complicated, arise naturally from localiza
tion computations on the moduli spaces of relative stable maps into P 1 

with ramification type /Lt at oo. 
We now introduce the generating series 

G M ( A ; T ) = £ A 2 3 - 2 + ^ > G 3 I M ( T ) . 

The special case when g = 0 is given by 
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f A 0
V ( 1 ) A 0

V ( - T - 1 ) A 0
V ( T ) _ f 1_ 

fMipi) 

which is known to be equal to |/Lt|^~3 for l(fi) > 3, and we use this 
expression to extend the definition to the case l(fi) < 3. 

Introduce formal variables p = {pi,P2, • • • ,pn, • • •), and define 

Pn = Pin "'" Pwtn) 

for any partition fi. These pilj correspond to Tr V^ in the notations of string 
theorists. The generating series for all genera and all possible marked points 
are defined to be 

G(X;T;P)= ^ G M ( A ; T ) P M , 

which encode complete information of the triple Hodge integrals we are 
interested in. 

Next we introduce the representation theoretical side. Let \n denote 
the character of the irreducible representation of the symmetric group S^, 
indexed by fi with \/J\ = £\- fij. Let C(fi) denote the conjugacy class of S1^ 
indexed by y,. Introduce 

w (\\ - TT sin [(fja -nb + b- q)A/2] 
W»{X)~ 1 1 , sin[(6-a)A/2] 

l<a<b<l(n) lV ' ' ' 
1 

This has an interpretation in terms of quantum dimension in Chern-Simons 
knot theory. 

We define the following generating series 

\ n - l 

n > l ii 

{ ^2 fl J2 ^ W ) ) e V ^ ( ^ K > V 2 w ^ ( A ) h i 

up=1M*=^*=i 1̂ 1=1̂ *1 

where \ix are sub-partitions of \x, zM = fT Mj\7Mj' ana^ 
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«M = IMI + 5 Z ^ 2 ~ 2i^ 
i 

for a partition [i which is also standard for representation theory of sym
metric groups. There is the relation z^ = | Aut(/x)|/xi • • • A*;̂ )-

Finally we can give the precise statement of the Marino- Vafa conjecture: 

Conjecture 5.1. We have the identity 

G(\;T;P)=R(X;T;P). 

Before discussing the proof of this conjecture, we first give several re
marks. 

Remarks : 

1. This conjecture is a formula: G : Geometry = R : Representations, and 
the representations of symmetric groups are essentially combinatorics. 

2. We note that each GM(A,r) is given by a finite and closed expression 
in terms of the representations of symmetric groups: 

n > l n 

^2 f[ Yl XA^)] e^T+^iX/2WAV-
U?=1n

i=iii=l\vi\ = \iJ.i\ M' 

The generating series GM(A, T) gives the values of the triple Hodge 
integrals for moduli spaces of curves of all genera with l{y) marked 
points. 

3. Note that an equivalent expression of this formula is the following non-
connected generating series. In this situation we have a relatively sim
pler combinatorial expression: 

G(A;r ;p) '=exp[G(A;r;p)] 

IMI>O M=|MI Z)l 

According to Marino and Vafa, this formula gives values for all Hodge 
integrals up to three Hodge classes. Lu proved that this is right if we 
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combine with some previously known simple formulas about Hodge 
integrals. 

4. By taking Taylor expansion in r on both sides of the Marino-Vafa 
formula, we have derived various Hodge integral identities in 40. 
For examples, as easy consequences of the Marino-Vafa formula and 
the cut-and-join equation as satisfied by the above generating series, 
we have unified simple proofs of the Xg conjecture by comparing the 
coefficients in r in the Taylor expansions of the two expressions, 

2g + n - 3 \ 22s~1 - 1 \B2 fci . . . ./.fcn \ _ z9 -+- n - a \ z j - i \o2g 

for fci + • • • + kn = 2g — 3 + n, and the following identities for Hodge 
integrals: 

f \3 _ f A A A 1 \B2g-2\ \B2g\ 

U V l ~ U A'-aA»-lA' - 2(2,-2)! 2fl-2 I T ' 
where .E?2g are Bernoulli numbers. And 

/" V i _ f c v ' 1 X V ( 2 g i - l ) ! ( 2 g 2 - l ) ! . 
L, 1 3 ^ -fc» 2^ i 2 2^ (20-1)! ffl 

where 

91+32=3 
9i,ff2>0 

&9 =" \ 2*9-1 t | B 2 f l | 
5 = 0, 

<7>0. 229-1 "(25)! 

Now let us look at how we proved this conjecture. This is joint work 
with Chiu-Chu Liu, Jian Zhou, see 37 and 38 for details. 

The first proof of this formula is based on the Cut-and-Join equation 
which is a beautiful match of combinatorics and geometry. The details of 
the proof is given in 37 and 38. First we look at the combinatorial side. 
Denote by [si,--- , Sfc] a fc-cycle in the permutation group. We have the 
following two obvious operations: 

1. Cut a fc-cycle is cut into an i-cycle and a j-cycle: 

[S,t] • [S ,S 2 , ••• ,Si,t,t2,---tj] = [ s , S 2 , ••• ,Si][t,t2,---tj]. 
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2. Join: an i-cycle and a j-cycle are joined to an (i + j)-cycle: 

[s,t] • [S,S2,- •• ,Si][t,t2,-- -tj] = [s,S2,- •• ,Si,t,t2,- • • t j ) . 

Such operations can be organized into differential equations which we call 
the cut-and-join equation. 

Now we look at the geometry side. In the moduli spaces of stable maps, 
cut and join have the following geometric meaning: 

1. Cut: one curve splits into two lower degree or lower genus curves. 
2. Join: two curves are joined together to give a higher genus or higher 

degree curve. 

The combinatorics and geometry of cut-and-join are reflected in the follow
ing two differential equations, which look like heat equation. It is easy to 
show that such equation is equivalent to a series of systems of linear ordinary 
differential equations by comparing the coefficients on p^. These equations 
are proved either by easy and direct computations in combinatorics or by 
localizations on moduli spaces of relative stable maps in geometry. In com
binatorics, the proof is given by direct computations and was explored in 
combinatorics in the mid 80s and later by Zhou 37 for this case. The dif
ferential operator on the right hand side corresponds to the cut-and-join 
operations which we also simply denote by (CJ). 

Lemma 5.1. 

OR 1 , _ ^ .. dR .. ,8RdR d2R .. 
or 2 *-r± opi+j apidpj opidpj 

On the geometry side the proof of such equation is given by localization 
on the moduli spaces of relative stable maps into the the projective line P 1 

with fixed ramifications at co: 

Lemma 5.2. 

dG 1 / _ ^2, dG .. ,dGdG d2G .. 
ih = 2 y z i A E « • + J ) * p ^ + ^ ^ d p - + dp-dp-V-

The proof of the above equation is given in 37. Together with the following 
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Initial Value : r = 0, 
oo 

which is precisely the Ooguri-Vafa formula and which has been proved 
previously for example in 51, we therefore obtain the equality which is the 
Marino-Vafa conjecture by the uniqueness of the solution: 

Theorem 5.2. We have the identity 

G{X;T;P) = R(\;T;P). 

During the proof we note that the cut-and-join equation is encoded in 
the geometry of the moduli spaces of stable maps. In fact we later find 
the convolution formula of the following form, which is a relation for the 
disconnected version G° = exp G, 

GI{\T)= J2 * ; , „ ( - ^ T A ) * „ J C ( A ) 

where $* „ is the generating series of double Hurwitz numbers, and zv is 
the combinatorial constant appeared in the previous formulas. Equivalently 
this gives the explicit solution of the cut-and-join differential equation with 
initial value K'(X), which is the generating series of the integrals of certain 
Euler classes on the moduli spaces of relative stable maps to P 1 . See 36 for 
the derivation of this formula, and see 39 for the two partition analogue. 

The Witten conjecture as proved by Kontsevich states that the gener
ating series of the ^-class integrals satisfy infinite number of differential 
equations. The remarkable feature of Marino-Vafa formula is that it gives a 
finite close formula. In fact by taking limits in r and /Xj's one can obtain the 
Witten conjecture. A much simpler direct proof of the Witten conjecture 
was obtained recently by Kim and myself in 19. We directly derived the 
recursion formula which implies both the Virasoro relations and the KdV 
equations. 

The same argument as our proof of the conjecture gives a simple and 
geometric proof of the ELSV formula for Hurwitz numbers. It reduces to 
the fact that the push-forward of 1 is a constant in equivariant cohomology 
for a generically finite-to-one map. See 38 for more details. 

We would like to briefly explain the technical details of the proof. The 
proof of the combinatorial cut-and-join formula is based on the Burnside 
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formula and various simple results in symmetric functions. See 51, and 
38 

The proof of the geometric cut-and-join formula used the functorial 
localization formula in 29 and 30. The virtual version of this formula was 
proved first applied to the virtual fundamental cycles in the computations 
of Gromov-Witten invariants in 30. 

As remarked in previous sections the functorial localization formula is 
very effective and useful because we can use it to push computations on 
complicated moduli space to simpler moduli space. The moduli spaces used 
by mathematicians are usually the correct but complicated moduli spaces 
like the moduli spaces of stable maps, while the moduli spaces used by 
physicists are usually the simple but the wrong ones like the projective 
spaces. This functorial localization formula has been used successfully in 
the proof of the mirror formula 29, 30, the proof of the Hori-Vafa formula 
28, and the easy proof of the ELSV formula 38. Our first proof of the Marifio-
Vafa formula also used this formula in a crucial way. 

More precisely, let M.g(P
x, /x) denote the moduli space of relative stable 

maps from a genus g curve to P 1 with fixed ramification type fi at oo, 
where fi is a fixed partition. We apply the functorial localization formula 
to the divisor morphism from the relative stable map moduli space to the 
projective space, 

Br: Mg(P\ti)^Pr, 

where r denotes the dimension of Mg(P
l
t //). This is similar to the set-up 

of mirror principle, only with a different linearized moduli space, but in 
both cases the target spaces are projective spaces. 

We found that the fixed points of the target P r precisely labels the 
cut-and-join operations of the triple Hodge integrals. Functorial localiza
tion reduces the problem to the study of polynomials in the equivariant 
cohomology group of P r . We were able to squeeze out a system of lin
ear equations which implies the cut-and-join equation. Actually we derived 
a stronger relation than the cut-and-join equation, while the cut-and-join 
equation we need for the Marino-Vafa formula is only the very first of such 
kind of relations. See 38 for higher order cut-and-join equations. 

As was known in infinite Lie algebra theory, the cut-and-join operator 
is closely related to and more fundamental than the Virasoro algebras in 
some sense. 
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Recently there have appeared two different approaches to the Marino-
Vafa formula. The first one is a direct derivation of the convolution formula 
which was discovered during our proof of the two partition analogue of the 
formula 39. See 36 for the details of the derivation in this case. The second 
is by Okounkov-Pandhripande 47, they gave a different approach by using 
the ELSV formula as initial value, and as well as the A5 conjecture and 
other recursion relations from localization on the moduli spaces of stable 
maps to P1 . 

6. Two Partition Formula 

The two partition analogue of the Marino-Vafa formula naturally arises 
from the localization computations of the Gromov-Witten invariants of the 
open toric Calabi-Yau manifolds, as explained in 52. 

To state the formula we let /x+, yT be any two partitions. Introduce the 
Hodge integrals involving these two partitions: 

<V,M- (A; T) = B(T; M
+ , / O • J2 *29~2A9(T; M+, / O 

where 

A ( + - , - f A g
v ( l )A g

v ( r )AV(-r - l ) 
JMgMll+)+l(ll-) Ili=i (1 - Kl>i) n / = i 'r {r ~ ft ^ + / ( M + ) J 

and 

#{r,n ,/x ) |Aut ( M +) | |Aut (M-) | i n >l 

These complicated expressions naturally arise in open string theory, as well 
as in the localization computations of the Gromov-Witten invariants on 
open toric Calabi-Yau manifolds. 

We introduce two generating series, first on the geometry side, 

G'(X;p+,p ; r ) = e x p [ ^ <V,M-(A,r)p++p-
,(M+,M-)67>2 
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where V2 denotes the set of pairs of partitions and p^± are two sets of 
formal variables associated to the two partitions as in the last section. 

On the representation side, we introduce 

i T ( A ; p + , p - ; r ) = £ X . * « W ) X, - (Cf r - ) ) 

l^±l=lM±l>o Z»+ Z,i~ 

Here 

W^ = g'<">/2WM • 8v{£„{t)) 

= (-vM+M^V™ £ « - " " V P ( 1 . «• • • • ) V P ( L «••••) 
p 

in terms of the skew Schur functions sM
 43. They appear naturally in the 

Chern-Simons invariant of the Hopf link. 

Theorem 6.1. We have the identity: 

G'(\;p+,p-;r)=R%X;p+,p-;T). 

The idea of the proof is similar to that of the proof of the Marino-Vafa 
formula. We prove that both sides of the above identity satisfy the same 
cut-and-join equation of the following type: 

±H- = \{CJ)+H- - ±(cj)-ir, 

where {CJ)^ denote the cut-and-join operator, the differential operator 
with respect to the two set of variables p^. We then prove that they have 
the same initial value at r = — 1: 

G'(X;p+,p-; - 1 ) = R'(\;p+,p-; - 1 ) , 

which is again given by the Ooguri-Vafa formula 39, 52. 
The cut-and-join equation can be written in a linear matrix form, and 

such equation follows from the convolution formula of the form 
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= E G* + )M-(A;r)^+$'+iM+(-v^lAr)^-$^^_(^^A) 
|i/±|=M± T 

where $• denotes the generating series of double Hurwitz numbers, and 
K^+ iM- is the generating series of certain integrals on the moduli spaces of 
relative stable maps. For more details see 39. 

This convolution formula arises naturally from localization computa
tions on the moduli spaces of relative stable maps to P 1 x P 1 with the 
point (oo, oo) blown up. So it reflects the geometric structure of the moduli 
spaces. Such convolution type formula was actually discovered during our 
search for a proof of this formula, both on the geometric and the combina
torial side, see 39 for the detailed derivations of the convolution formulas in 
both geometry and combinatorics. 

The proof of the combinatorial side of the convolution formula is again 
a direct computation. The proof of the geometric side for the convolution 
equation is to reorganize the generating series from localization contribu
tions on the moduli spaces of relative stable maps into P 1 x P 1 with the 
point (oo, oo) blown up, in terms of the double Hurwitz numbers. It involves 
careful analysis and computations. 

7. The Theory of Topological Vertex 

When we worked on the Marino-Vafa formula and its generalizations, we 
were simply trying to generalize the method and the formula to involve more 
partitions, but it turned out that in the three partition case, we naturally 
met the theory of topological vertex. Topological vertex was first introduced 
in string theory by Vafa et al in *, it can be deduced from a three partition 
analogue of the Marino-Vafa formula in a highly nontrivial way. From this 
we were able to give a rigorous mathematical foundation for the physical 
theory. Topological vertex is a high point of the theory of string duality as 
developed by Vafa and his group for the past several years, starting from 
Witten's conjectural duality between Chern-Simons and open string theory. 
It gives the most powerful and effective way to compute the Gromov-Witten 
invariants for all open toric Calabi-Yau manifolds. In physics it is rare to 
have two theories agree up to all orders, topological vertex theory gives a 
very significant example. In mathematics the theory of topological vertex 
already has many interesting applications. Here we only briefly sketch the 
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rough idea for the three partition analogue of the Marino-Vafa formula. For 
its relation to the theory of topological vertex, we refer the reader to 26 for 
the details. 

Given any three partitions ft = {/x1, i i2 , / i3}, the cut-and-join equation 
in this case, for both the geometry and representation sides, has the form: 

| - F ' ( A ; T ; P ) = ( C J ) 1 ^ (A; r ; p ) + ^ ( C J ) 2 F ' ( A ; r ; p ) 

The cut-and-join operators {CJ)1, {CJ)2 and (CJ)3 are with respect to 
the three partitions. More precisely they correspond to the differential op
erators with respect to the three groups of infinite numbers of variables 
p = {p\p2,p3}. 

The initial value for this differential equation is taken at T = 1, which 
is then reduced to the formulas of two partition case. The combinatorial, 
or the Chern-Simons invariant side is given by Wy = WMiiM2i/x3 which is a 
combination of the WM,„ as in the two partition case. See 26 for its explicit 
expression. 

On the geometry side, 

G'(A;r;p) = exP(G(A;r;p)) 

is the non-connected version of the generating series of the triple Hodge 
integral. More precisely, 

oo 

G(A;r;P) = £ [ £ A ^ + ' ^ G ^ C r ) ^ 2 ^ 
7? s=o 

where l(~JJt) = l(iJ,l)+l(fj,2)+l(fj,3) and Gg^-j*{r) denotes the Hodge integrals 
of the following form, 

A g
v ( l )A g

v ( r )A g
v ( - r - l ) 

n i 8 = i ( T + i ) ( T + n - ^ j 1 + l a + i ) ' 

where 

A(T) _ 
JM 
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{ ) I Aut(/ii)|| A u t ( ^ ) | | Aut(/i3)| 1 1 0 4 - 1 ) ! 

A naiT'CC-l - 1A)MJ+") ft n ^ M A r + 1) + a ) 

In the above expression, U = l(/J.1), i = 1,2,3. Despite of its complicated 
coefficients, these triple integrals naturally arise from localizations on the 
moduli spaces of relative stable maps into the blow-up of P 1 x P 1 x P 1 

along certain divisors. It also naturally appears in open string theory com
putations *. See 26 for more details. 

One of our results in 26 states that (j*(A;r;p) has a combinatorial ex
pression R'(X;T;P) in terms of the Chern-Simons knot invariants W-g, 
which is a closed combinatorial expression. More precisely it is given by 

-jt |„<|=|M*|»=i ^ 

Here W4 = w\ and W3 = -w\ — W2 and r = ^ . Due to the complicated 
combinatorics in the initial values, the combinatorial expression W-p we ob
tained is different from the expression W^j obtained by Vafa et al. Actually 
our expression is even simpler than theirs in some sense. The expression we 
obtained is more convenient for mathematical applications such as the proof 
of the Gopakumar-Vafa conjecture for open toric Calabi-Yau manifolds, see 
48 

Theorem 7.1. We have the equality: 

G*(\;T;P) = R'(\;T;P). 

The key point to prove the above theorem is still the proof of convolution 
formulas for both sides which imply the cut-and-join equation. The proof 
of the convolution formula for G * ( A ; T ; P ) is much more complicated than 
the one and two partition cases. See 26 for details. 

The most useful property of topological vertex is its gluing property in
duced by the orthogonal relations of the characters of the symmetric group. 
This is very close to the situation of two dimensional gauge theory. In fact 
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string theorists consider topological vertex as a kind of lattice theory on 
Calabi-Yau manifolds. By using the gluing formula we can easily obtain 
closed formulas for generating series of Gromov-Witten invariants of all 
genera and all degrees, open or closed, for all open toric Calabi-Yau man
ifolds, in terms of the Chern-Simons knot invariants. Such formulas are 
always given by finite sum of products of those Chern-Simons type invari
ants WM,„'s. The magic of topological vertex is that, by simply looking at 
the moment map graph of the toric surfaces in the open toric Calabi-Yau, 
we can immediately write down the closed formula for the generating series 
for all genera and all degree Gromov-Witten invariants, or more precisely 
the Euler numbers of certain bundles on the moduli space of stable maps. 

Here we only give one example to describe the topological vertex formula 
for the generating series of the all degree and all genera Gromov-Witten 
invariants for the open toric Calabi-Yau 3-folds. We write down the explicit 
close formula of the generating series of the Gromov-Witten invariants in 
this case. 

Example: Consider the toric Calabi-Yau manifold which is 0{—3) —> P 2 . 
In this case the formula for the generating series of all degrees and all genera 
Gromov-Witten invariants is given by 

oo 

exp(£A2s-2Ffl(i)) 

where q = e'^~^x. The precise definition of Fg(t) will be given in the next 
section. 

For general open toric Calabi-Yau manifolds, the expressions are just 
similar. They are all given by finite and closed formulas, which are easily 
read out from the moment map graphs associated to the toric surfaces, with 
the topological vertex associated to each vertex of the graph. 

In l Vafa and his group first developed the theory of topological ver
tex by using string duality between Chern-Simons and Calabi-Yau, which 
is a physical theory. In 26 we established the mathematical theory of the 
topological vertex, and derived various mathematical corollaries, including 
the relation of the Gromov-Witten invariants to the equivariant index the
ory as motivated by the Nekrasov conjecture in string duality 37. During 
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the development of the mathematical theory of topological vertex we also 
introduced formal Calabi-Yau manifolds, see 26 for details. 

8. The Gopakumar-Vafa Conjecture and the Indices of 
Elliptic Operators 

Let N9id denote the so-called Gromov-Witten invariant of genus g and 
degree d of an open toric Calabi-Yau 3-fold. Ng>d is defined to be the Euler 
number of the obstruction bundle on the moduli space of stable maps of 
degree d e H2(S,Z) from genus g curve into the surface base S. The open 
toric Calabi-Yau manifold associated to the toric surface S is the total space 
of the canonical line bundle Ks on S. More precisely 

Ng4 = [_ e(Vg,d) 

with VS:d = .R17r*u*.ft',s a vector bundle on the moduli space induced by the 
canonical bundle Ks- Here TT : U —• A4g(S,d) denotes the universal curve 
and u can be considered as the evaluation or universal map. Let us write 

Fg{t) = YJNg,de-dt. 
d>0 

The Gopakumar-Vafa conjecture is stated as follows: 

Conjecture 8.1. There exists an expression: 

d\s 

g=0 k=lg,d>0 

such that n9
d are integers, called instanton numbers. 

OO CXI , , , 

^ A 2 * - 2 ^ ) = £ £ n ^ ( 2 s i n ^ ) 2 ^ 2 e - ^ , 

Motivated by the Nekrasov duality conjecture between the four dimensional 
gauge theory and string theory, we are able to interpret the above integers 
n9

d as equivariant indices of certain elliptic operators on the moduli spaces 
of anti-self-dual connections 37: 

Theorem 8.2. For certain interesting cases, these nd 's can be written as 
equivariant indices on the moduli spaces of anti-self-dual connections on 
C2 . 

For more precise statement, we refer the reader to 27. The interesting 
cases include open toric Calabi-Yau manifolds when S is Hirzebruch surface. 
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The proof of this theorem is to compare fixed point formula expressions for 
equivariant indices of certain elliptic operators on the moduli spaces of anti-
self-dual connections with the combinatorial expressions of the generating 
series of the Gromov-Witten invariants on the moduli spaces of stable maps. 
They both can be expressed in terms of Young diagrams of partitions. We 
find that they agree up to certain highly non-trivial "mirror transforma
tion", a complicated variable change. This result is not only interesting for 
the index formula interpretation of the instanton numbers, but also for the 
fact that it gives the first complete examples that the Gopakumar-Vafa 
conjecture holds for all genera and all degrees. 

Recently P. Peng 48 has given the first complete proof of the 
Gopakumar-Vafa conjecture for all open toric Calabi-Yau 3-folds by us
ing our Chern-Simons expressions from the topological vertex. His method 
is to explore the property of the Chern-Simons expression in great detail 
with some clever observation about the form of the combinatorial expres
sions. On the other hand, Kim in 18 has derived some remarkable recursion 
formulas for Hodge integrals of all genera and any number of marked points, 
involving one A-classes. His method is to add marked points in the mod
uli spaces and then follow the localization argument we used to prove the 
Marino-Vafa formula. 

9. Two Proofs of the ELSV Formula 

In this section we describe two proofs of the ELSV formula, one is by direct 
localization and cut-and-join equation following our proof of the Marifio-
Vafa formula, another one is to derive it from the Marino-Vafa formula 
through a scaling limit. These results are contained in 40 

Given a partition \i of length l(n), denote by Hg M the Hurwitz numbers 
of almost simple Hurwitz covers of P1 of ramification type JJ, by connected 
genus g Riemann surfaces. The ELSV formula 8, 14 states: 

fl,
fl,M = ( 2 5 - 2 + |/i | + i(/i))!Jfl,/1 

where 
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Define generating functions 

$(A;p) = £ **WP,» 
IMI>I 

* / 1(A) = ^ / 9 , M A a 9 - 2 + l " l + ' ( ' ' ) > 

g>0 

*(A;p) = £ * . ( % • 

In terms of generating functions, the ELSV formula reads 

Theorem 9.1. We have the identity 

*(A;p) = *(A;p). 

We first describe a proof of this formula by using cut-and-join equations, 
following our proof of the Marino-Vafa formula. It was known that $(A;p) 
satisfies the following cut-and-join equation 12: 

96 i ^ / . . d2@ deee .. ., oe \ 
-^r = o / ^ l3Pi+i a a + lJPi+j^—-S— + Kl + J)PiPj-z • 
d\ 2 ^ \ T J dpidpj dpi dpj dpi+j) 

This equation was later reproved by sum formula of symplectic Gromov-
Witten invariants 21. 

The calculations in Section 7 and Appendix A of 37 shows that 

Hg^ = {2g-2+\ii\+l{ix))\Ig^ 

Hg^ = (2g-3+\fi\+l^))ll £ Ig>v + J2 W")Ig-i,» 
\uGJ(n) u£C(n) 

+ Y, Yu h{v\v'2)lgi,vjg2,v 
gi+g2=g I / 1 U I / 2 £ C ( M ) 

where 

?>M — / _ Hg>ll = I Bi*Hr 

' [A t 9 , o (PV) ] v i r 

is some relative Gromov-Witten invariant of (P 1 , oo), and 

C(/*), J{fi), h, h, h 
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are defined as in 21. So we have 

(25 - 2 + |M| + W S , M 

,1/1 • ' 92 , "2 i 

t/£J(/i) W€C(M) 91+32=5 i/1Ui/2eC(/i) 

which is equivalent to the statement that the generating function \I/(A;p) 
of Ig>fi also satisfies the cut-and-join equation. 

Any solution 0(A;p) to the cut-and-join equation (9) is uniquely de
termined by its initial value O(0;p), so it remains to show that ^(0;p) = 
$(0;p). Note that 2g-2 + \fi\+ l(fi) = 0 if and only if g = 0 and (i = (1), 
so 

*(0;p) = #0,(i)Pi> $(0;p) = J0,(i)Pi-

It is easy to see that Ho,(i) = ^o,(i) = 1, so 

tf(0;p) = $(0;p). 

One can see geometrically that the relative Gromov-Witten invariant 
Hgyli is equal to the Hurwitz number Hgili. This together with (9) gives a 
proof of the ELSV formula presented in 37 in the spirit of 14. Note that 
H9ill — Hg:)1 is not used in the proof described above. 

On the other hand we can deduce the ELSV formula as the limit of the 
Marino-Vafa formula. By the Burnside formula, one easily gets the following 
expression (see e.g. 3 9 ) : 

$ (A;p) = logf^f^^ e -V 2 ^J 

= E ^ E E ft E ^ e ^ ^ ^ . 
The ELSV formula reads 

tf(A;p)=$(A;p) 

where the left hand side is a generating function of Hodge integrals 75)M, and 
the right hand side is a generating function of representations of symmetric 
groups. So the ELSV formula and the Marino-Vafa formula are of the same 
type. 

Actually, the ELSV formula can be obtained by taking a particular 
limit of the Marino-Vafa formula G(A;r;p) = i?(A;r;p). More precisely, it 
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is straightforward to check that 

HmG(AT;i;(AT)pi,(AT)2p2,---) 

|M |#0P=0 

= ¥(> /=! A; p) 

and 

YimR(\T-,p(\T)pu(\T)2p2,---) 

log ( ^ I £ ^ l ) e V=T^A/ 2 i i m o ( f M K ( f ) ) ^ J 
V M \ M = |MI

 M ~* / / 

X ^ M ) ^ ^ A / 2 1_ 

= *(>/=lA;p) 

where we have used 
1 dim R„ 

See 40 for the notations. In this limit, the cut-and-join equation of G(A; r; p) 
and i?(A;r;p) reduces to the cut-and-join equation of ^(X;p) and $(A;p), 
respectively. 

10. A Localization Proof of the Witten Conjecture 

The Witten conjecture for moduli spaces states that the generating series 
F of the integrals of the tp classes for all genera and any number of marked 
points satisfies the KdV equations and the Virasoro constraint. For example 
the Virasoro constraint states that F satisfies 

Ln-F = 0, n > - 1 

where Ln denote certain Virasoro operators to be given later. 
Witten conjecture was first proved by Kontsevich using combinato

rial model of the moduli space and matrix model, with later approaches 
by Okounkov-Pandhripande 47using ELSV formula and combinatorics, by 
Mirzakhani 45 using Weil-Petersson volumes on moduli spaces of bordered 
Riemann surfaces. 
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I will present a much simpler proof by using functorial localization and 
asymptotics. This was done jointly with Y.-S. Kim in 19. This is also moti
vated by methods in proving conjectures from string duality. It should have 
more applications. 

The basic idea of our proof is to directly prove the following recursion 
formula which, as derived in physics by Dijkgraaf, Verlinde and Verlinde 
by using quantum field theory, implies the Virasoro and the KdV equation 
for the generating series F of the integrals of the ip classes: 

l^a,b 

Theorem 10.1. We have identity 

fees fees i^k 
>» + ! E 

a+b=n-2 

+2 E (°a n ^M^n^-
s=xur, keX leY 

a+6=Ti —2, 

Here a„ = (2n + 1)!!̂ ™ and 

j=\ JMg,7 

n 

' j= l 

The notation S = {fci, • • • , kn) = X U Y. 
To prove the above recursion relation, similar to the proof of the Marifio-

Vafa formula, we first apply the functorial localization to the natural branch 
map from moduli space of relative stable maps A /l9(P1,/i) to projective 
space P r where r = 2g — 2 + \fi\ + l(fi) is the dimension of the moduli. 

As discussed in last section we easily get the cut-and-join equation for 
one Hodge integral 

J9,M — 

|Aut fi\ fj^ [J.i\ JMgn 11(1 - tHTpi) ' 

The equation we get has the form as discussed in last section, it is trivial 
corollary of the fact that the push-forward of 1 in equivariant cohomology 
by a map between equal dimension manifolds is a constant: 

(2g - 2 + \fj\ + I (M))/9 I M 

= E J^+ E W/9-i,„+ E E h{v\^)I9l 

Note that more general formulas of such type was first found and proved 
by Kim in 18. 
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Write fj,i = Nxi. Let N go to infinity and expand in a;*, we get: 

*•• — i 

„3 2 (Xi +Xj)ki+ki~% 

2TT 

£ (2fc + l)!!(2/ + l ) ! ! ^ 1 - T V 

k+l=ki-2 
2k* kA tf 

„ . j - ' • M j , , „ , JM„0.„o 91+92=3- JMSl^\ 
^ 0. 

Performing Laplace transforms on the Xj's, we get the recursion formula in 
the above theorem which implies both the KdV equations and the Virasoro 
constraints. For example the Virasoro constraints states that the generating 
series 

r(i) = e x p ^ ( e x p ^ f „ C T n ) p 

g=0 n 

satisfies the equations: 

L „ - r = 0, ( n > - l ) 

where Ln denote the Virasoro differential operators 

1 d v~v. I s - d 1~> 

1 5 ^ V , 1 - 9 1 

1 d ^2. 1 . - 9 1 v-^ 

2 0 t„ - i fc=0 
2 0t fc+n 4 ^ dU-.-tdtn-i 

We remark the same method can be used to derive very general recursion 
formulas in Hodge integrals and general Gromov-Witten invariants. We 
hope to report these results on a later occasion. 
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1 1 . F ina l R e m a r k s 

We strongly believe tha t there is a more interesting and grand duality 

picture between Chern-Simons invariants for three dimensional manifolds 

and the Gromov-Witten invariants for open toric Calabi-Yau manifolds. We 

hope such a duality picture will also help us solve the counting problems 

of higher genus curves in compact Calabi-Yau manifolds. Our proofs of the 

Marino-Vafa formula, and the setup of the mathematical foundation for 

topological vertex theory and the results of others we have discussed above 

all together have just opened a small window for a more splendid picture. 

We can certainly expect more exciting conjectures from such duality to 

stimulate more developments in mathematics . 
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1. Introduction 

In 1987 a Geometry and Topology year was organized by Prof. Chern in 
Nankai and I participated as an undergraduate from the University of Sci
ence and Technology of China. There I learned about M. Preedman's work 
on 4-dimensional manifolds. Then I went to the University of California 
at San Diego to study with M. Freedman in 1989, and later became his 
most frequent collaborator. It is a great pleasure to contribute an article 
to the memory of Prof. Chern based partially on some joint works with M. 
Freedman and others. Most of the materials are known to experts except 
some results about the classification of topological quantum field theories 
(TQFTs) in the end. This paper is written during a short time, so inaccu
racies are unavoidable. Comments and questions are welcome. 

There are no better places for me to start than the Chern-Simon the
ory. In the hands of Witten, the Chern-Simons functional is used to define 
TQFTs which explain the evaluations of the Jones polynomial of links at 
certain roots of unity. It takes great imagination to relate the Chern-Simons 
theory to electrons in magnetic fields, and quantum computing. Neverthe
less, such a nexus does exist and I will outline this picture. No attempt has 
been made regarding references and completeness. 

•The author is partially supported by NSF grant DMS-034772 and EIA 0130388. 



Chem-Simons Theory and Quantum Computation 107 

2. Chern-Simons theory and TQFTs 

Fix a simply connected compact Lie group G. Given a closed oriented 3-
manifold M and a connection A on a principle G-bundle P over M, the 
Chern-Simons 3-form ti(A A dA + |^43) is discovered when Profs. Chern 
and Simons tried to derive a purely combinatorial formula for the first Pon-
trjagin number of a 4-manifold. Let CS(A) = ^ JM ti(A A dA + |^43) be 
the Chern-Simons functional. To get a TQFT, we need to define a complex 
number for each closed oriented 3-manifold M which is a topological invari
ant, and a vector space V(E) for each closed oriented 2-dimensional surface 
S. For a level k > hy +1, where /iv is the dual Coxeter number of G, the 3-
manifold invariant of M is the path integral Zk(M

3) = JA e^i-k-cs(A)D^ 
where the integral is over all gauge-classes of connection on P and the 
measure DA has yet to be denned rigorously. A closely related 3-manifold 
invariant is discovered rigorously by N. Reshetikhin and V. Turaev based 
on quantum groups. To define a vector space for a closed oriented surface E, 
let X be an oriented 3-manifold whose boundary is E. Consider a principle 
G-bundle P over X, fix a connection a on the restriction of P to E, let 
Zkta = J(A a\ e2lTlk'cs(A^DA, where the integral is over all gauge-classes of 
connections of A on P over X whose restriction to E is a. This defines a 
functional on all connections {a} on the principle G-bundle P over E. By 
forming formal finite sums, we obtain an infinite dimensional vector space 
5(E). In particular, a 3-manifold X such that dX = E defines a vector 
in 5(E). Path integral on disks introduces relations onto the functionals, 
we get a finitely dimensional quotient of 5(E), which is the desired vector 
space V(E). Again such finitely dimensional vector spaces are constructed 
mathematically by N. Reshetikhin and V. Turaev. The 3-manifold invari
ant of closed oriented 3-manifolds and the vectors spaces associated to the 
closed oriented surfaces form part of the Witten-Reshetikhin-Turaev-Chern-
Simons TQFT based on G at level=/c. Strictly speaking the 3-manifold in
variant is defined only for framed 3-manifolds. This subtlety will be ignored 
in the following. 

Given a TQFT and a closed oriented surface E with two connected com
ponents Ei, E2, where Ei is Ei with the opposite orientation, a 3-manifold 
X with boundary dX = E gives rise to a linear map from l^(Ei) to V{T,2)-
Then the mapping cylinder construction for self-diffeomorphisms of surfaces 
leads to a projective representation of the mapping class groups of surfaces. 
This is the TQFT as axiomatized by M. Atiyah. Later G. Moore and N. 
Seiberg, K. Walker and others extended TQFTs to surfaces with bound-
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aries. The new ingredient is the introduction of labels for the boundaries 
of surfaces. For the Chern-Simons TQFTs, the labels are the irreducible 
representations of the quantum deformation groups of G at level=fc or the 
positive energy representations of the loop groups of G at level=fc. For more 
details and references, see [T]. 

3. Electrons in a flatland 

Eighteen years before the discovery of electron, a graduate student E. Hall 
was studying Electricity and Magnetism using a book of Maxwell. He was 
puzzled by a paragraph in Maxwell's book and performed an experiment to 
test the statement. He disproved the statement by discovering the so-called 
Hall effect. In 1980, K. von Klitzing discovered the integer quantum Hall 
effect (IQHE) which won him the 1985 Nobel Prize. Two years later, H. 
Stormer, D. Tsui and A. Gossard discovered the fractional quantum Hall 
effect (FQHE) which led to the 1998 Nobel Prize for H. Stormer, D. Tsui 
and R. Laughlin. They were all studying electrons in a 2-dimensional plane 
immersed in a perpendicular magnetic field. Laughlin's prediction of the 
fractional charge of quasi-particles in FQHE electron liquids is confirmed 
by experiments. Such quasi-particles are anyons, a term introduced by F. 
Wilczek. Braid statistics of anyons are deduced, and experiments to confirm 
braid statistics are being pursued. 

The quantum mechanical problem of an electron in a magnetic field was 
solved by L. Landau. But the fact that there are about 1011 electrons per 
cm2 for FQHE liquids makes the solution of the realistic Hamiltonian for 
such electron systems impossible, even numerically. The approach in con
densed matter physics is to write down an effective theory which describes 
the universal properties of the electron systems. The electrons are strongly 
interacting with each other to form an incompressible electron liquid when 
the FQHE could be observed. Landau's solution for a single electron in a 
magnetic field shows that quantum mechanically an electron behaves like 
a harmonic oscillator. Therefore its energy is quantized to Landau levels. 
For a finite size sample of a 2-dimensional electron system in a magnetic 
field, the number of electrons in the sample divided by the number of flux 
quanta in the perpendicular magnetic field is called the Landau filling frac
tion v. The state of an electron system depends strongly on the Landau 
filling fraction. For v < 1/5, the electron system is a Wigner crystal: the 
electrons are pinned at the vertices of a triangular lattice. When v is an 
integer, the electron system is an IQHE liquid, where the interaction among 
electrons can be neglected. When v are certain fractions such as 1/3,1/5,..., 
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the electrons are in a FQHE state. Both IQHE and FQHE are character
ized by the quantization of the Hall resistance Rxy = v~x ^, where e is the 
electron charge and h the Planck constant, and the exponentially vanishing 
of the longitudinal resistance Rxx. There are about 50 such fractions and 
the quantization of Rxy is reproducible up to 10 - 1 0 . How could an electron 
system with so many uncontrolled factors such as the disorders, sample 
shapes and variations of the magnetic field strength, quantize so precisely? 
The IQHE has a satisfactory explanation both physically and mathemat
ically. The mathematical explanation is based on non-commutative Chern 
classes. For the FQHE at filling fractions with odd denominators, the com
posite fermion theory based on U(l)-Chern-Simons theory is a great suc
cess: electrons combined with vortices to form composite fermions and then 
composite fermions, as new particles, to form their own integer quantum 
Hall liquids. The exceptional case is the observed FQHE v = 5/2. There 
are still very interesting questions about this FQH state. For more details 
and references see [G]. 

4. Topologization of electron liquids 

The discovery of the fractional quantum Hall effect has cast some doubts 
on Landau theory for states of matter. A new concept, topological order, is 
proposed by Xiao-gang Wen of MIT. It is believed that the electron liquid 
in a FQHE state is in a topological state with a Chern-Simons TQFT as 
an effective theory. In general topological states of matter have TQFTs as 
effective theories. The v = 5/2 FQH electron liquid is still a puzzle. The 
leading theory is based on the PfafHan states proposed by G. Moore and 
N. Read in 1991 [MR]. In this theory, the quarsi-particles are non-abelian 
anyons (a.k.a. plectons) and the non-abelian statistics is described by the 
Chern-Simons-SU(2) TQFT at level=2. 

To describe the new states of matter such as the FQH electron liquids, 
we need new concepts and methods. Consider the following Gedanken ex
periment: suppose an electron liquid is confined to a closed oriented surface 
E, for example a torus. The lowest energy states of the system form a Hilbert 
space V(E), called the ground states manifold. In an ordinary quantum 
system, the ground state will be unique, so V(Y,) is 1-dimensional. But for 
topological states of matter, the ground states manifold is often degenerate 
(more than 1-dimensional), i.e. there are several orthogonal ground states 
with exponentially small energy differences. This ground states degeneracy 
is a new quantum number. Hence a topological quantum system assigns 
each closed oriented surface £ a Hilbert space V(T,), which is exactly the 
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rule for a TQFT. FQH electron liquid always has an energy gap in the ther
modynamic limit which is equivalent to the incompressibility of the electron 
liquid. Therefore the ground states manifold is stable if controlled below the 
gap. Since the ground states manifold has the same energy, the Hamilto-
nian of the system restricted to the ground states manifold is 0, hence there 
will be no continuous evolutions. This agrees with the direct Lengendre 
transform form the Chem-Simons Lagrangians to Hamiltoninans. Since the 
Chern-Simons 3-form has only first derivatives, the corresponding Hamil-
tonian is identically 0. In summary, ground states degeneracy, energy gap 
and the vanishing of the Hamiltonian are all salient features of topological 
quantum systems. 

Although the Hamiltonian for a topological system is identically 0, there 
are still discrete dynamics induced by topological changes. In this case 
the Schrodinger equation is analogous to the situation for a function f(x) 
such that fix) = 0, but there are interesting solutions if the domain of 
f(x) is not connected as then f(x) can have different constants on the 
connected components. This is exactly why braid group representations 
arise as dynamics of topological quantum systems. 

5. Anyons and braid group representations 

Elementary excitations of FQH liquids are quasi-particles. In the following 
we will not distinguish quasi-particles from particles. Actually it is not in
conceivable that particles are just quasi-particles from some complicated 
vacuum systems. Particle types serve as the labels for TQFTs. Suppose a 
topological quantum system confined on a surface E has elementary exci
tations localized at certain points pi,p2, • • • on E, the ground states of the 
system outside some small neighborhoods of pi form a Hilbert space. This 
Hilbert space is associated to the surface with the small neighborhoods of pi 
deleted and each resulting boundary circle is labelled by the corresponding 
particle type. Although there are no continuous evolutions, there are dis
crete evolutions of the ground states induced by topological changes such 
as the mapping class groups of £ which preserve the boundaries and their 
labels. An interesting case is the mapping class groups of the disk with n 
punctures—the famous braid groups on n-strands, Bn. 

Another way to describe the braid groups Bn is as follows: given a 
collection of n particles in the plane R2, and let / — [£o,£i] be a time 
interval. Then the trajectories of the particles will be n disjoint curves in 
M.2 x I if at any moment the n particles are kept apart from each other. If the 
n particles at time t\ return to their initial positions at time to as a set, then 
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their trajectories form an n-braid a. Braids can be stacked on top of each 
other to form the braid groups Bn. Suppose the particles can be braided 
adiabatically so that the quantum system would be always in the ground 
states, then we have a unitary transformation from the ground states at 
time to to the ground states at time t\. Let V(Yi) be the Hilbert space for 
the ground states manifold, then a braid induces a unitary transformation 
on V(E). Actually those unitary transformations give rise to a projective 
representation of the braid groups. If the n particles are of the same type, 
the resulting representations of the braid groups will be called the braid 
statistics. Note that there is a group homomorphism from the braid group 
Bn to the permutation groups Sn by remembering only the initial and final 
positions of the n particles. 

The plane R2 above can be replaced by any space X and statistics can 
be defined for particles in X similarly. The braid groups are replaced by the 
fundamental groups Bn(X) of the configuration spaces Cn(X). If X = Rm 

for some m > 2, it is well known that Bn(X) is Sn. Therefore, all particle 
statistics for particles in X = Rm will be given by representations of the 
permutation groups. There are two irreducible 1-dimensional representa
tions of Sn, which correspond to bosons and fermions. If the statistics does 
not factorize through the permutation groups Sn , the particles are called 
anyons. If the images are in U(l), the anyon will be called abelian, and oth
erwise non-abelian. The quasi-particles in the FQH liquid at u = 1/3 are 
abelian anyons. To be directly useful for topological quantum computing, 
we need non-abelian anyons. Do non-abelian anyons exist? 

Mathematically are there unitary representations of the braid groups? 
There are many representations of the braid groups, but unitary ones are 
not easy to find. The most famous representations of the braid groups are 
probably the Burau representation discovered in 1936, which can be used 
to define the Alexander polynomial of links, and the Jones representation 
discovered in 1981, which led to the Jones polynomial of links. It is only 
in 1984 that the Burau representation was observed to be unitary by C. 
Squier, and the Jones representation is unitary as it was discovered in a 
unitary world [Jl]. So potentially there could be non-abelian anyon statis
tics. An interesting question is: given a family of unitary representations 
of the braid groups pn : Bn —» U(kn), when this family of representations 
can be used to simulate the standard quantum circuit model efficiently 
and fault tolerantly? A sufficient condition is that they come from certain 
TQFTs with some density on the braid group representation images, but 
is it necessary? 
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Are there non-abelian anyons in Nature? This is an important unknown 
question at the writing. Experiments are underway to confirm the prediction 
of the existence in certain FQH liquids [DFN]. Specifically the FQH liquid at 
v = 5/2 is believed to have non-abelian anyons whose statistics is described 
by the Jones representation at the 4-th root of unity. More generally N. 
Read and E. Rezayi conjectured that the Jones representation of the braid 
groups at r-th root of unity describes the non-abelian statistics for FQH 
liquids at filling fractions v = 2 + j ^ , where k = r — 2 is the level [RR]. 
For more details and references on anyons see [Wi]. 

As an anecdote, a few years ago I wrote an article with others about 
quantum computing using non-abelian anyons and submitted it to the jour
nal Nature. The paper was rejected within almost a week with a statement 
that the editors did not believe in the existence of non-abelian anyons. For
tunately the final answer has to come from Mother Nature, rather than the 
journal Nature. 

6. Topological quantum computing 

In 1980s Yu. Manin and R. Feynman articulated the possibility of com
puting machines based on quantum physics to compute much faster than 
classical computers. Shor's factoring algorithm in 1994 has dramatically 
changed the field and stirred great interests in building quantum comput
ers. There are no theoretical obstacles for building quantum computers as 
the accuracy threshold theorem has shown. But decoherence and errors 
in implementing unitary gates have kept most experiments to just a few 
qubits. In 1997 M. Freedman proposed the possibility of TQFT computing 
[F]. Independently A. Kitaev proposed the idea of fault tolerant quantum 
computing using anyons [K]. The two ideas are essentially equivalent as 
we have alluded before. Leaving aside the issue of discovering non-abelian 
anyons, we may ask how to compute using non-abelian anyons? For more 
details and references see [NC]. 

6.1. Jones representation of the braid groups 

Jones representation of the braid groups is the same as the Witten-
Reshetikhin-Turaev-SU(2) TQFT representation of the braid groups. 
Closely related theories can be defined via the KafFuman bracket. For an 
even level k, the two theories are essentially the same, but for odd levels 
the two theories are distinguished by the Frobenius-Schur indicators. How
ever the resulting braid group representations are the same. Therefore we 
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will describe the braid group representations using the Kauffman bracket. 
The Kauffman bracket is an algebra homomorphism from the group al
gebras of the braid groups C[Bn] to the generic Temperley-Lieb algebras. 
For applications to quantum computing we need unitary theories. So we 
specialize the Kauffman variable A to certain roots of unity. The resulting 
algebras are reducible. Semi-simple quotients can be obtained by imposing 
the Jones-Wenzl idempotents. The semi-simple quotient algebras will be 
called the Jones algebras, which are direct sum of matrix algebras. Fix r 
and an A satisfying A4 = e

± 2 7 n / r , the Jones representation for a braid a is 
the Kauffman bracket image in the Jones algebra. To describe the Jones rep
resentation, we need to find the decomposition of the Jones algebras into 
their simple matrix components (irreducible sectors). The set of particle 
types for the Chern-Simons-SU(2) TQFT at level=fc is L = {0,1, • • • , A;}. 
The fusion rules are given by a ® b = (Be, where a, b, c satisfy 

1). the sum a + b + c is even, 
2). a + b > c, b + c > a, c + a > b, 
3). a + b + c< 2k. 
A triple (o, b,c),a,b,c€ L satisfying the above three conditions will be 

called admissible. 
The Jones algebra at level=A; for n-strands decomposes into irreducible 

sectors labeled by an integer m such that m £ L,m = n mod 2. Fix m, the 
irreducible sector has a defining representation V™ with a basis consisting 
of admissible labelings of the following tree (Fig. 6.1): 

0 in 

Fig. 6.1. Basis 

There are n vertical edges labeled by 1, and the 0-th horizontal edge 
(leftmost) is always labeled by 0, and the n-th edge (rightmost) is always 
labeled by m. The internal (n — 1) edges are labeled by a, b, c, • • • such that 
any three labels incident to a trivalent vertex form an admissible triple. 
A basis with internal labelings a, b, c, • • • will be denoted by e™b c .... The 
Kauffman bracket is Cj = A • id + A"1 • Ui, so it suffices to describe the 
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matrix for Ui with basis e™b c ... in V{S. The matrix for Ui consists of 1 x 1 
and 2 x 2 blocks. Fix m and a basis element e™6c..., suppose that the 
i,i + l,i + 2 internal edges are labeled by f,g,h. If / ^ h, then [/, maps 
this basis to 0. If / = h, then by the fusions rules g = f± 1 (the special case 
is / = 0, then g = 1 only), then Ui maps e™,/,/±i,/,... back to themselves 
by the following 2 x 2 matrix: 

(?* ) • 
where A^ is the Chebyshev polynomial denned by Ao = l ,A i = 

d, Afc+i = dAfc + Ak-i,d = -A2 - , 4 - 2 , and x,y satisfy xy = A / + l f / - 1 • 
From those formulas, there is a choice of x, y up to a scalar, and in order 

to get a unitary representation, we need to choose A so that the 2 x 2 blocks 
are real symmetric matrices. This forces A to satisfy q = A4 = e ± 2 W r . it 
also follows that the eigenvalues of CTJ are — 1, q up to scalars. 

6.2. Anyonic quantum computers 

We will use the level=2 theory to illustrate the construction of topological 
quantum computers. There are three particle types {0,1,2}. The label 0 
denotes the null-particle type, which is the vacuum state. Particles of type 
1 are believed to be non-abelian anyons. Consider the unitary Jones rep
resentation of B\, the irreducible sector with m = 0 has a basis {e\ b 1 } , 
where b = 0 or 2. Hence this can be used to encode a qubit. For BQ, a 
basis consists of e^ bl 1 b2 1: where bi,i = 1,2 is 0 or 2. Hence this can be 
used to encode 2-qubits. In general n-qubits can be encoded by the m = 0 
irreducible sector of the Jones representation P2n+2 °f ^2n+2- The unitary 
matrices of the Jones representations / ^ ( i ^ ) , ^4(^6) will be quantum gates. 
To simulate a quantum circuit on n-qubits UL '• (C2) —> (C2) , we need 
a braid a £ -B2n+2 such that the following diagram commutes: 

(C2)®" — ^ V°n+2 

UL 1 I P2n+2 
(C2)®" — > s V$,n+a 

This is not always possible because the images of the Jones represen
tation of the braid groups at r = 4 are finite groups. It follows that the 
topological model at r = 4 is not universal. To get a universal computer, 
we consider other levels of the Chern-Simons-SU(2) TQFT. The resulting 
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model for r = 4 is slightly different from the above one. To simulate n-
qubits, we consider the braid group Bin. The 4n edges besides the leftmost 
in Fig. 6.1 can be divided into n groups of 4. Consider the basis elements 
such every 4k-th edge is labelled by 0, and every (4k+2)-th edge can be 
labeled either by 0 or 2. Those 2™ basis elements will be used to encode 
n-qubits. The representations of the braid groups B\n will be used to sim
ulate any quantum circuits on n-qubits. This is possible for any level other 
than 1,2 and 4 [FLW1][FLW2]. 

6.3. Measurement in topological models 

A pictorial illustration of a topological quantum computer is as follows (Fig. 
6.2): 

Fig. 6.2. Topological model 

We start the computation with the ground states of a topological sys
tem, then create particle pairs from the ground states to encode the initial 
state which is denoted by \cup >(two bottom cups). A braid b is adiabat-
ically performed to induce the desired unitary matrix p(b). In the end, we 
annihilate the two leftmost quasi-particles (the top cap) and record the 
particle types of the fusion. Then we repeat the process polynomially many 
times to get an approximation of the probability of observing any particle 
type. Actually we need only to distinguish the trivial versus all other non-
trivial particle types. For level=3 or r = 5, the probability to observe the 
trivial particle type 0 is < cap\p+(b) f30 p(6)|citj> >, which is related to the 
Jones polynomial of the following circuit link (Fig. 6.3) by the formula: 

1 (-1Y • Vr(e27ri/5) 

P = Prob(0) = — W *> 2ffi }), 
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minima (L) 

Fig. 6.3. Circuit link 

where in the formula c = c(L) is the number of components of the link 
L, [2] = —A2 — A~2 is quantum 2 ar r = 5. Our normalization for the Jones 
polynomial is that for the unlink with c components, the Jones polynomial 
is (-[2])<=. 

To derive this formula, we assume the writhe of L is 0. Other cases are 
similar. In the Kauffman bracket formulation, the projector to null particle 
type Ylo 1S the same as the element -^fa of the Jones algebras. It follows 
that p is just the Kauffman bracket of the tangle b-U\-b~l divided by — [2]. 
Now consider the Kaffman bracket < L > of L, resolving the 4 crossings 
of L on the component 7 using the Kauffman bracket results a sum of 16 
terms. Simplifying, we get 

< L > = (-[2])c([2]2 - 3) + (4 - [2]2)(-[2])c • p. 

Since the writhe is assumed to be 0, the Kauffman bracket is the same 
as the Jones polynomial of L. Solving for p, we obtain 

3 - [ 2 ] 2
n 1 ( - l ) c -VL(e 2 " / 5 ) 

P 4 - [ 2 ] 2 1 + [2]c • (3 - [2]2) h 

Direct calculation using the identity [2]2 = 1 + [2] gives the desired 
formula. This formula shows that if non-abelian anyons exist to realize 
the Jones representation of the braid groups, then quantum computers will 
approximate the Jones polynomial of certain links. So the Jones polynomial 
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of links are amplitudes for certain quantum processes [FKLW]. This inspired 
a definition of a new approximation scheme: the additive approximation 
which might lead to a new characterization of the computational class BQP 
[BFLW]. 

6.4. Universality of topological models 

In order to simulate all quantum circuits, it suffices to have the closed 
images of the braid groups representations containing the special unitary 
groups for each representation space. In 1981 when Jones discovered his 
revolutionary unitary representation of the braid groups, he proved that 
the images of the irreducible sectors of his unitary representation are finite 
if r — 1,2,3,4,6 for all n and r = 10 for n = 3. For all other cases the 
closed images are infinite modulo center. He asked what are the closed 
images? In the joint work with M. Freedman, and M. Larsen [FLW2], we 
proved that the closed images are as large as they can be: always contain 
the special unitary groups. As a corollary, we have proved the universality 
of the anyonic quantum computers for r ^ 1, 2,3,4,6. 

The proof is interesting in its own right as we formulated a two-
eigenvalue problem and found its solution [FLW2], The question of un
derstanding TQFT representations of the mapping class groups are widely 
open. Partial results are obtained in [LW]. 

6.5. Simulation of TQFTs 

In another joint work with M. Freedman, and A. Kitaev [FKW], we proved 
that any unitary TQFT can be efficiently simulated by a quantum com
puter. Combined with the universality for certain TQFTs, we established 
the equivalence of TQFT computing with quantum computing. As corollar
ies of the simulation theorem, we obtained quantum algorithms for approxi
mating quantum invariants such as the Jones polynomial. Jones polynomial 
is a specialization of the Tutte polynomial of graphs. It is interesting to ask 
if there are other partition functions in statistical mechanics such as the 
Potts models that can be approximated by quantum computers efficiently 
[Wei]. 

6.6. Fault tolerance of topological models 

Anyonic quantum computers are inherently fault tolerant [K]. This is es
sentially a consequence of the disk axiom of TQFTs if the TQFTs can be 
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localized to lattices on surfaces. Localization of TQFTs can also be used to 
establish an energy gap rigorously. 

7. Classification of topological states of matter 

Topological orders of FQH electron liquids are modelled by TQFTs. It is an 
interesting and difficult problem to classify all TQFTs, hence topological 
orders. In 2003 I made a conjecture that if the number of particle types is 
fixed, then there are only finitely many TQFTs. The best approach is based 
on the concept of modular tensor category (MTC) [T][BK]. A modular 
tensor category encodes the algebraic data inside a TQFT, and describes 
the consistency of an anyonic system. Modular tensor category might be a 
very useful concept to study topological quantum systems. In 2003 I gave a 
lecture at the American Institute of Mathematics to an audience of mostly 
condensed matter physicists. It was recognized by one of the participants, 
Prof. Xiao-gang Wen of MIT, that indeed tensor category is useful for 
physicists as his recent works have shown. 

Recently S. Belinschi, R. Stong, E. Rowell and myself have achieved the 
classification of all MTCs up to 4 labels. The result has not been written up 
yet, but the list is surprisingly short. Each fusion rule is realized by either 
a Chern-Simons TQFT and its quantum double. For example, the fusion 
rules of self-dual, singly generated modular tensor categories up to rank=4 
are realized by: SU{2) level=l, 50(3) level=3, SU{2) level=2, SO{3) level 
5, SU(2) level=3. It follows from the Ocneanu rigidity that my finiteness 
conjecture holds for ranks up to 4. 

8. Open questions 

There are many open problems in the subject and directions to pursue for 
mathematicians, physicists and computer scientists. We just mention a few 
here. The most important for the program is whether or not there are non-
abelian anyons in Nature. Another question is to understand the boundary 
(1+1) quantum field theories of topological quantum systems. Most of the 
boundary QFTs are conformal field theories. What is the relation of the 
boundary QFT with the bulk TQFT? How do we classify them? 

Quantum mechanics has been incorporated into almost every physi
cal theory in the last century. Mathematics is experiencing the same now. 
Wavefunctions may well replace the digital numbers as the new notation to 
describe our world. The nexus among quantum topology, quantum physics 
and quantum computation will lead to a better understanding of our uni-
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verse, and Prof. Chern would be happy to see how important a role tha t 

his Chern-Simons theory is playing in this new endeavor. 
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Quasicrystals: Projections of 5-d Lattice into 2 and 3 Dimensions 
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We show that generalized Penrose tilings can be obtained by the projection of a 
cut plane of a 5-dimensional lattice into two dimensions, while 3-d quasiperiodic 
lattices with overlapping unit cells are its projections into 3d. The frequencies of 
all possible vertex types in the generalized Penrose tilings, and the frequencies 
of all possible types of overlapping 3-d unit cells are also given here. The 
generalized Penrose tilings are found to be nonconvertable to kite and dart 
patterns, nor can they be described by the overlapping decagons of Gummelt. 

1. Introduction 

Quasicrystals, though originally introduced as a mathematical curiosity, 
have become an object of intense study by physicists and mathematicians 
following the startling discovery in 1984 of five- or ten-fold symmetry in 
diffraction patterns off certain alloys.1 Quasicrystals have been studied most 
often by filling the space aperiodically with nonoverlapping tiles, such as 
in Penrose tilings.2"4 However, in the mid 1990s, Gummelt5 proposed a 
new description of the regular Penrose tiling in terms of the overlapping of 
decorated decagons. Further research6-9 has shown that this may be a more 
sensible way to understand quasicrystalline materials—made of overlapping 
unit cells sharing atoms of nearby neighbors.7 

We shall use de Bruijn's multigrid method to produce a new example of 
3-dimensional overlapping unit cells.10 Moreover, we shall use the pentagrid 
method to obtain generalized Penrose tilings, which cannot be converted to 
kite and dart patterns, nor do they satisfy the inflation and deflation rules. 
Therefore, since Conway's cartwheels, which are in fact the overlapping 
decagons of Gummelt, are constructed from kite and dart patterns,3 they 
cannot be used to describe the generalized Penrose tilings. 

mailto:perk@okstate.edu
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2. Grids and the 'Cut and Projection Method' 

It is well-known that a Penrose tiling can be obtained by the projection 
of a particularly 'cut' slice of the 5-d euclidian lattice onto a 2-d plane 
Z>,4,11'12 and that its diffraction pattern,13""15 therefore, has five- or ten
fold symmetry. It is also known that not all lattice points k in Z5 can be 
mapped onto vertices of a Penrose tiling; only those points in a particular 
'cut' slice whose projections into the 3-dimensional orthogonal space W 
are inside the window of acceptance,11'16 contribute. The window has been 
shown11 to be the projection of the 5-d unit cell Cu(5) with 25 vertices into 
this 3-d space W. 

If dj are the generators of the plane V and Wj are the generators of its 
orthogonal space W, then the projection operators are the matrices 

DT = (do,--- ,d4), WT = (w0,--- ,wA) (2.1) 

satisfying DTW = W D = 0, where the superscript T denotes matrix 
transposition. More specifically, we choose 

dj = (cos jd, sin j6), wj = (cos2j6, sin2j6,1) = (d£ , 1), (2.2) 

where j = 0, • • • ,4 and 9 = 2-7r/5. Using notations and ideas introduced by 
de Bruijn,4 we consider the 2-d or 3-d pentagrid consisting of five grids of 
either equidistant lines given by 

xcos j0+ y sin j6+ jj = djr+ ~/j = kj, rT = (x,y), (2.3) 

or equidistant planes defined by 

xcos2j6 + ysm2j0 + z + ij =wjR + jj = kj, RT = (x,y,z), (2.4) 

for j = 0, • • • , 4, and with the five kj £ Z. In (2.3) and (2.4), the 7^ are real 
numbers which shift the grids from the origin. We denote their sum by 

7o + 7 i + 7 2 + 7 3 + 7 4 = c , 0 < c < l . (2.5) 

Without loss of generality, we may restrict c to 0 < c < 1, as we can see 
from (2.3) that c —> c — n if we let ko —* fco + n. Obviously, such a relabeling 
cannot change the 2-d or 3-d quasiperiodic patterns. 

It has been shown by de Bruijn4 that the Penrose tiling associated 
with a 2-d pentagrid has simple matching rules only for c = 0. In other 
words, for 0 < c < 1 the corresponding generalized Penrose tilings do not 
satisfy simple matching rules, and have different sets of vertices for different 
intervals of c.17 Nevertheless, the diffraction patterns are believed to be the 
same for all values of c.18,19 
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Let the integer kj be assigned to all points sandwiched between the grid 
lines or planes defined by kj — 1 and kj. This kj can be found by 

Kj(r) = \djr + 7 j ] , V r e R 2 (2.6) 

Kj(R) = \w]R + jj], V H e E 3 (2.7) 

for j = 0, • • • , 4, (and \x] is the smallest integer greater than or equal 
to x). A mesh in R2 is an interior area, enclosed by grid lines, containing 
points with the same five integers Kj(r), while a mesh in R3 is now an 
interior volume, enclosed by grid planes, containing points with the same 
five integers Kj{R). One then maps each mesh in R2 to a vertex in V by 

4 

f(r) = J2Kj(r)dj=DTK(r), KT(r) = (K0(r),- • • ,K4(r)), (2.8) 
j=o 

and each mesh in R3 to a vertex in W by 

4 

g(R) = ] T kj(R)Wj = WTK(R), KT(R) = (K0(R), • • • , K4(R)). 

(2.9) 
The resulting sets of vertices I = {f(r)\r e R2} and £ = {g(R)\R e R3} 
are, respectively, the two- and three-dimensional quasiperiodic lattices. 

3. Window of Acceptance 

Given a point k T = (fco,..., k^) in the five-dimensional lattice,* one may 
ask whether there is a mesh in the pentagrid (or the 3-d multigrid) such 
that Kj(r) = kj (or Kj(R) = kj) for j = 0 , . . . ,4. As seen from (2.6) (or 
(2.7)), this is equivalent to asking whether it is possible to find points r in 
R2 (or R in R3), and points AT = (A 0 , . . . , A4) with 0 < Â  < 1, such that 

D r + 7 + A = k,, (WR + j + \ = k), (3.1) 

where 7 T = (70, • • • ,74) and where A lies inside the 5-d unit cube Cu(5). 
Whenever (3.1) holds, the point k in Z5 is said to satisfy the mesh condition. 
Since W D = D W = 0, the above equations become 

W T [ k - 7 ] = W T A, (3.2) 

DT[k~1]=DTX, (3.3) 

*For a formulation for more general cases, see Ref. 11. 
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such that DTk e I if (3.2) holds, or WTk e C if (3.3) holds. Thus, WTX 
is the window of acceptance for projections into 2d and DT\ for 3d. They 
are respectively the interiors of the convex hulls of the points WTrii and 
D rii, where the TO* are the 25 vertices of the 5-d unit cube Cu(5). 

We choose the 32 n^'s as follows 

! # = (0,0,0,0,0), nl = (1,0,0,0,0), ^ = (0,0,0,1,0), n$ = (0,1,0,0,0), 
n j = (0,0,0,0,1), nj = (0,0,1,0,0), nj = (1,0,0,1,0), n f = (0,1,0,1,0), 
ni[ = (0,1,0,0,1), ^ = (0,0,1,0,1), n?o = (1,0,1,0,0), nf1== (1,1,0,0,0), 
nf2 = (0,0,0,1,1), nf3 = (0,1,1,0,0), nf4 = (1,0,0,0,1), nf5 = (0,0,1,1,0), 
nf6 = (1,1,0,0,1), nf7 = (0,0,1,1,1), nf8 = (1,1,1,0,0), nf9 = (1,0,0,1,1), 
n5, = (0,1,1,1,0), i^l = (1,1,0,1,0), 11^ = (0,1,0,1,1), n& = (0,1,1,0,1), 
nf4 = ( l , 0 , l , 0 , l ) , n ^ = ( l , 0 , l , l , 0 ) , i ^ = (l, 1,0,1,1), r#7 = (0,1,1,1,1), 
n i 8 = ( l , l , l , 0 , l ) , n i 9 = ( l , 0 , l , l , l ) , n ^ 0 = ( l , l , l , l , 0 ) , n i ,

1 = ( l , l , l , l , l ) . 
(3.4) 

The projection of these 32 points into W is a polytope V having 20 
faces and 40 edges connecting the 22 vertices, as is shown in Fig. 3.1. We 
let Pi = WTrii for i = 0, • • • ,31. The bottom is P0 = (0,0,0) and top 
is P 3 1 = (0,0,5); they are called the tips of the polytope. The remaining 
twenty vertices of V are 

Pj+i = (dj,l), Pj+e = (dj + dj+i, 2), 

Pj+21 = (~dj-2 ~ dj-i,3), Pj+26 = ( - d j - i , 4 ) , (3.5) 

for j = 0, • • • , 4. The other 10 points P%\, • • • , P20 are in the interior of the 
polytope and are given by 

Pu+j = (dj + dj+2,2), PIQ+J = (—dj+i - dj-i,3), (3.6) 

again for j = 0, • • • , 4. 
The orthogonal projection of the 32 points n* into V is a decagon Q 

with 10 edges connecting the 10 vertices. Let Qi = D rij, for i = 0, • • • , 31. 
Then the vertices of the decagon are 

Qii+j = ~pd3-2j, Qie+j =pd5-2j, (3.7) 

with j = 0, • • • , 4, and p = (\/5 + l ) /2 is the golden ratio. The remaining 
22 points Q0, • • • , Q10, Q2 i , " ' > Q31 a r e m t n e interior; they are given by 

Qo = ^31 — 0, Qj+l = d$-2j, Q26+J — —d2-2j, 

Qj+6=p-1d4-2j, Q2i+j = -P~1d3-2j- (3.8) 

The decagons are shown in Fig. 3.2. Thus if orthogonal projection DT(k—7) 
is in Q, then its projection WTk is in C. 
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(a) c = 0 (b) c # 0 

Fig. 3.1. The projection of the 5-dimensional unit cube into the orthogonal 3-space W. 
The polytopes with 22 vertices are tilted 10 degree with respect to the vertical, so that 
the intersections Vj with the planes z = I — c can be seen. In (a), for c = 0, we show the 
projection of the 32 points, 10 of which are in the interior, and the Vj are all pentagons. 
In (b), for c # 0, the Vj are pentagons for 1—1,5, and decagons for / = 2,3,4. 

S3 18 

12 1C 

Fig. 3.2. The projection of the 5-d unit cube Cu(5) into the orthogonal 2-d space £>. 
The window is a decagon Q whose vertices are given by (3.7). Those rij which are mapped 
to interior points (vertices) of V in Fig. 3.1, are mapped into the boundary vertices of 
Q. 

4. Generalized Penrose Tilings 

Using (2.1) and (2.2), we may rewrite the three components of (3.2) as 
4 4 4 4 

][>,• - jj) = I - c = ]TXj, X > j - lj)d2i = J2 Ai<%, (4.1) 
3=0 3=0 j=0 j=0 
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where I = ^,kj is the index of k, an integer in the interval [1,5] for 0 < 
c < 1. (I = 5 does not occur for c = 0.) Eq. (4.1) defines the window Vi for 
accepting k with index I. This window Vj is the intersection of the polytope 
V with the plane at the height I — c shown in Fig. 3.1. 

For k in window Vj, we examine the condition for its neighbor k', (with 
k = k±rij,j = 1,• • • , 5), to be in window Vj±i. Whenever this condition is 
satisfied, then DTk and DTk' are both vertices of the generalized Penrose 
tiling. Furthermore there is a 'positive' ('negative') edge incident from the 
image of k in the direction of d,3j {—d$j) to the image of k'. This way we 
can determine all the vertex types of the generalized Penrose tiling for a 
given c. Denoting all vertices with index / having n 'positive' edges and 
n' 'negative' edges by [n,n']i, we find that for fc e V\ there are only three 
kinds of vertex types [5,0]i, [4,0]i, and [3,0]i, and for k e V5 there are 
also only three kinds of vertex types [0,5)5, [0,4]5, and [0,3]s, shown in 
Fig. 4.1(a). 

\ y 
[5.11x5 [1,51x5 

••>{ K 

>1—3 3 — < ( 

Si N 
• ' [3.11,5X2 " ' 3 1 X 5 X 2 

(a) vertex types [n,0]i and [0, n']s (b) vertex types [n, l]2 and [l,n']4 

Fig. 4.1. (a) Edges connecting two sites with indices 1 and 2 are represented by thin 
dashed lines, while edges connecting sites with indices 5 and 4 are represented by thick 
dashed lines, (b) A few examples of vertex types [n, 1]2 and [n, 1)4 are given here. Edges 
connecting sites with indices 2 and 3 are denoted by thick lines, and edges connecting 
sites with indices 3 and 4 by thin lines. We use [n, n'] x 5 to indicate the 5-fold multiplicity 
under 72° rotations allowed for the vertex, and [n, n') x 5 X 2 to indicate the additional 
reflection symmetry when it is present. 

If the probability of finding a vertex of type [n,n']i is denoted by 

2 N v / 

*;*'- 2 4 — * r 
/sN 

K. 
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Ai(n,n')/5p, then 

A1[5,0} = l(p-1+p)p-3(l-c)2, 
ill [4,0] = | p - 4 ( l - c)2, ^ [ 3 , 0 ] = f p -3( i _ C )2 , (4.2) 

while A5[0,n] is given by replacing 1 — c in A\[n,0] by c. 
There are nine different vertex types for / = 2,4, see Fig. 4.1(b) for 

some examples of each type. Their frequencies are 

A2[5,0] = I ( p - l + p ) [ % - 2 - C ) ( p - 3 + c ) 2 + ^ ( c _ p - 2 ) p - 4 ( 2 _ c ) 2 ] ) 

A2[5,1] - 0(p~ 2- c ) | ( p - 5 + c)p(p- 2 - c), 
^ l 2 [ 5 , 2 ] = % - 2 - c ) | p - 1 ( p - 2 - c ) 2 , 

A 2 [ 4 , 0 ] = % - p - 2 ) | ( c - p - 2 ) [ p - 1 ( l - c ) + p - 3 ( 2 - c ) ] , 
42[4, 1] = ^ ( p - 2 - C j f p - V + 0(c - p - 2 ) | p - 3 ( l - c)2, 

A2[3,2] = % - 2 - c ) | p 2 ( p - 2 - c ) 2 , 
A2[3,1] = 5p-2( l - c)2 - 0 (p" 2 - c)5p 2(p- 2- c)2, 

A2[3,0] = §c2 - % - p-2)5(c - p - 2 ) 2 , 
^2[2, l] = | p - 1 ( l - c ) 2 , (4.3) 

where 6(x) is the Heaviside function, i.e., 6(x) = 1 for x > 0, and zero 
otherwise. We find that the open interval 0 < c < 1 is split into two intervals 
0 < c < p~ 2 and p - 2 < c < 1. Inside the former interval, A2(4,0) = 0, 
and only eight kinds of vertices are allowed; inside the latter, ^42(5,2) = 
A2(5,1) = A2(3,1) = 0, allowing only six vertex types. At the boundary 
c = 0 or c = p~2 , there are only five allowed vertex types. We find that 
Ai[n,n'} can be obtained from J42[n',n] by c —> 1 — c. Now for c in the 
interval 0 < c < p _ 1 there are six nonvanishing vertex types, while inside 
the interval p _ 1 < c < 1, there are eight nonvanishing vertex types. 

There are many vertex types [n, n']3. Twelve out of twenty of their 
frequency functions A3 [n, n'] are given as 

A3[0,5] = % - 3 - c ) i ( p " 1 + p ) ( p - 3 - c ) 2 , 
A3[l,5] = 0 ( p - 3 - c ) § ( p - 3 - c ) 2 , 

^ [ 2 , 5 ] = 0(p~ 2- c ) | p 2 ( p " 2 - c)2 - 0 (p" 3 - c)5p2(p"3- c)2, 
A3[3,5] = 0(2p- 3 - c)[ |c2 - 9(c - p~3)5p2(c - p " 3 ) 2 

+ ^ ( c - p - 2 ) 5 p 3 ( c - p - 2 ) 2 ] , 
^3[4, 5] = 0(C -p - 3 ) [^ (p -2+p-4_ c ) | p 3 ( p - 2 + p - 4 _ c)2 

- 0 ( 2 p - 3 - c)5p3(2p-3- c)2 + 0 ( p - 2 - c)5p 2 (p- 2 - c)2], 
^ 3 [ 5 , 5 ] = % - p - 3 ) [ e ( 2 p - 2 - c ) i ( p + p - 1 ) ( 2 p - 2 - c ) 2 

- ^ ( p - 2 + p - 4 - C ) | p 3 ( p - 2 + p - 4 _ c ) 2 + ^ ( 2 p-3_ c ) | p3 ( 2 p-3_ ^ 
A3[3,4] = % - 1 - c ) [ | p - 3 c 2 

-0{c - p-2)5p(c - p - 2 ) 2 + 6{c - 2p- 3 ) |p 3 (c - 2p-3)2], 
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^ [ 4 , 4 ] = Oip-1- c)[9{c-p-2)5(c-p-2)2 - 0 (c -2p- 3 )5p 3 (c -2p- 3 ) 2 

+9(c -p~2- p-4)5p3(c -p~2- p - 4 ) 2 ] , 
A3[3,3] = 5p-i(l-c)2-e(p-1-c)5p-1(p-1-c)2+6(p-2-c)5p-l(p-2-c)2, 

A3[2,3}=5p-3(l-c)2-6(p-2-c)lp-1(p-2-c)2, 
A3[2,2] = 10p-1c(l-c), A3[l,2] = | p - 1 ( l - c ) 2 . (4.4) 

The remaining eight A3[n',n] can be obtained from A3[n,n'} by letting 
c —> 1 — c. They are continuous functions of c. 

We plot in Fig. 5.1 generalized Penrose tilings for c = p~2 = 
0.3819660098 and c = 0.5. We find that the number of vertices of index 
1 increases, and of index 5 decreases, as c increases. 

5. Overlapping polytope 

Consider now the projection of Z5 into the 3-d space W. It is easy to find 
the conditions for both k and its neighbors k + rij, for j = 1 • • • 5, to satisfy 
their mesh conditions, so that they are vertices of quasiperiodic lattice C. 

We find that every point inside the innermost decagon Q in Fig. 3.2 
corresponds to a point in C that is connected with its 10 neighbors, and is 
in fact a tip of a polytope. This innermost decagon Q is further divided into 
10 triangles. Each point inside a triangle corresponds to a polytope in C 
having exactly four interior points which are also in C. Points in the same 
triangle correspond to polytopes having the same four interiors points, but 
for different triangles the polytopes have different sets of interior points. 
Thus each unit cell contains 26 'atoms,' 22 exterior and 4 interior sites. 

Each of the triangles in Q is further divided into eight regions shown 
in Fig. 3.2. The points inside the quadrilateral denoted by (al) in Fig. 3.2, 
correspond to a polytope intersecting with four other polytopes and sharing 
with each a polyhedron J with six faces; inside the two triangles denoted 
by (a2) and (a3), each point corresponds to a polytope intersecting with five 
other polytopes and sharing with one of them a polyhedron K, with twelve 
faces and with the other four polyhedra J\ inside the two other triangles 
(a4) and (a6), each point corresponds to a polytope intersecting with four 
neighboring polytopes sharing with one of them a polyhedron /C and with 
the other three polyhedra J; inside the two remaining triangles (a5) and 
(a7), a polytope intersects with five other polytopes, sharing with two of 
them a polyhedron /C and with the other three a polyhedron J\ inside 
the pentagon (a8), a polytope intersects with six other polytopes sharing 
with two of them a polyhedron /C and with the other four a polyhedron 
J. Their relative frequencies are related to the ratio of their areas and are 
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1 : p~3 : p~2 : p~3 : h(p~2 + P~4)- These frequencies are independent of c. 

(a) c = p~2 (b) c = 0.5 

Fig. 5.1. Generalized Penrose tilings: There are four kinds of edges. Edges connecting 
two sites with index 1 and index 2 are represented by a thin dashed line; edges connecting 
sites with index 4 and index 5 by a thick dashed line; edges connecting sites with index 
2 and index 3 by a thick line; and edges connecting sites with index 3 and index 4 by a 
thin line. Even though no arrows are drawn on the edges, the 'positive' (connecting / to 
7 + 1 sites) or 'negative' (connecting I to / — 1 sites) direction of an edge, is completely 
determined by the indices of the sites at the two ends of an edge. 

The 3-d quasiperiodic lattice C can be further shown to be periodic in 
the z-direction, which is the direction of the line joining the bottom and 
the top of the polytopes V, and aperiodic in the zy-directions.10 

6. Conclusion 

The generalized Penrose tilings of thin and fat rhombs cannot be con
verted to tilings of kites and darts. This can be seen as follows: Four thin 
rhombs and one fat rhomb is the only way to fit the vertex of type [3,1)2 in 
Fig. 4.1(b), which can be easily seen to be nonconvertable to a tiling of darts 
and kites. On the other hand, for c = 0, the kite-and-dart patterns of the 
Penrose tiling5 can be viewed as single repeating cartwheels,3 which overlap 
with their neighbors. These cartwheels are the overlapping quasi-unit-cells 
of Gummelt,5-9 and are larger than the decagons which are the projections 
of the 5-d unit cells onto 2 dimensions.17 The generalized Penrose tilings are 
shown to be inequivalent to kite-and-dart patterns, nor do they satisfy the 
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inflation and deflation rules. Therefore, the method of Gummelt cannot be 
used here. It can be seen from Fig. 5.1 that in the neighborhood of the star 
vertices [5,0)3 or [0,5]4, only parts of decagons which are the projections of 
the 5-d unit cells onto 2 dimensions17 are in C This is not like the case for 
c = 0 or for the preojection of the 5-d lattice onto 3-d space. The difference 
may be due to the fact that 3-d cut hyperplanes in 5d are larger than 2-d 
cut planes and therefore contain most of neighboring unit cells Cu(5). For 
c = 0, the cut plane for the Penrose tiling is special such that each decagon 
which is a projection of the unit cell Cu(5) into V can also be viewed as 
quasi-overlapping unit cell. 
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We investigate thermal and magnetic properties of the double spin chain com
pound KCUCI3 via an exactly solved ladder model with strong rung interac
tion. Results from the analysis of the thermodynamic Bethe Ansatz equations 
suggests the critical field values Hc\ = 22.74 T and Hci = 51.34 T, in good 
agreement with the experimental observations. The temperature dependent 
magnetic properties are directly evaluated from the exact free energy. Good 
overall agreement is seen between the theoretical and experimental susceptibil
ity curves. Our results suggest that this compound lies in the strong dimerized 
phase with an energy gap A as 35 K at zero temperature. 

1. Introduction 

It is believed that the compounds KCUCI3, TICUCI3 and NH4CUCI3 exhibit 
a double spin chain structure,1-13 along the lines of Fig. 1.1. In the double 
chain structure, coupling constants Jj_ (Jy) denote the interchain (intra-
chain) spin exchange interactions, with Jd a diagonal interaction. However, 
there appears to be no uniform agreement on the values of these coupling 
constants for the double chain compounds. In particular, the coupling con
stants for the compound KCUCI3 are uncertain. Several theoretical models 
have been proposed to describe this material, including a double chain 
model with strong antiferromagnetic dimerization,3'4 a ladder model with 
additional diagonal interactions1,2 and a three-dimensional coupled spin-
dimer system.6-10 None of these models provide an overall fit for all ther
mal and magnetic properties, see, e.g., the review by Dagotto.14 Measure
ments of the high field magnetization5'6 and the susceptibility1 indicate 
that KCUCI3 exhibits a singlet ground state with an energy gap A « 31K 
at T = 1.7 K. Nevertheless, it has been difficult to fix all of the coupling 
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Fig. 1.1. Schematic picture of the structure of double chain compounds such as KCUCI3. 
Here J± (J^) is the interchain (intrachain) interaction. J& is the spin exchange interaction 
in the diagonal direction. 

parameters of the model by fitting to only one physical property at a time. 
At very low temperatures, T < 5 K, the compound KCUCI3 exhibits three-
dimensional magnetic ordering due to complex structural magnetic inter
action paths.7 - 1 0 

In this communication we investigate the critical fields, magnetization 
and susceptibility of the compound KCUCI3 via an integrable ladder model. 
The results are used to examine the values of the coupling constants for the 
double chain structure. The results for the ladder model with strong rung 
coupling are seen to be in good agreement with the experimental results 
for the energy gap, critical fields, susceptibility and magnetization. 

2. The integrable ladder model 

It has been shown that integrable (exactly solved) ladder models can be 
used to describe real ladder compounds with strong rung interaction.15-17 

These integrable ladder models enjoy the nice property that thermal and 
magnetic quantities can be obtained exactly via well developed meth
ods from integrable systems, such as the Thermodynamic Bethe Ansatz 
(TBA),18 the Quantum Transfer Matrix (QTM),19 T-systems20 and the 
High Temperature Expansion (HTE) of Non Linear Integral Equations 
(NLIE).21-24 

The simplest integrable two-leg spin- \ ladder model is constructed from 
the integrable su(4) spin chain with singlet rung interaction. The Hamilto-
nian is given by25 

L L 

H = J,|Hleg + JX £ §i • fi - WH £ ( S ? + T/), (2.1) 

where 
L 

Hieg = E {§i • 4 n + fi • Ti+i + 4 $ • Sj+1)(fj • fj+1)j . (2.2) 
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Here L is the number of rungs with S,- = (Sj, SJ, SJ) and fj = (Tf, T/ , T/) 
spin-^ operators acting on site j . The Bohr magneton is ^ B and g is the 
Lande factor. Periodic boundary conditions, SL+I = Si, T L + I = 7\, are 
imposed. 

In contrast to the standard Heisenberg ladder model the integrable lad
der model features an additional biquadratic spin interaction term in the 
definition (2.2) of Hieg. This term causes a shift in the critical value of 
the rung coupling Jx at which the energy gap closes, and it also causes a 
rescaling of the parameter J|| for strong rung coupling. In the strong cou
pling limit Jx ^> J|| the rung interaction dominates the ground state and 
low-lying excitations. The integrable model then lies in the same phase as 
the standard Heisenberg ladder, motivating its analysis. 

The ground state properties at zero temperature may be obtained from 
the TBA equations.15 '26-28 Details of the derivation can be found in Ref. 17. 
In the strong coupling limit the integrable spin-^ ladder model exhibits 
three quantum phases: a gapped phase in the regime H < Hc\, a fully 
polarized phase for H > HC2 and a Luttinger liquid magnetic phase in 
the regime Hc\ < H < HC2. The exact values for the critical fields are15 

Hci — Jx - 4J|| and Hc2 = Jx + 4J\\. 
On the other hand, the temperature dependent free energy has been 

calculated via the exact HTE of the NLIE.16 '17 The free energy of the 
integrable spin ladder (2.1) is given in the form16'17 

-^f(T,H) = lnQ^ + ±c^J^)n (2.3) 
n = l ^ ' 

where Q^ and the first few coefficients c„ 0 are given explicitly in Refs. 16, 
17. These terms are functions of the rung coupling Jx, fJ-BgH and the 
temperature. Most importantly, the exact expression (2.3) for the free en
ergy can be used to examine physical properties such as the magnetization, 
susceptibility and magnetic specific heat via the standard thermodynamic 
relations 

M = - 9 / ( T ' F ) 

OH X = 
d2f(T,H) 

dH2 C = -T 
d2f(T,H) 

dT2 
H 

3. The compound KCuCl3 

In this section we examine the low temperature properties of the compound 
KCUCI3. Experimental measurements of the high field magnetization5,6 

show that magnetic anisotropics are negligible, because the critical fields 
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are almost the same for the external field in different directions. However, 
the susceptibility curves for the external magnetic field along the differ
ent directions are influenced by different g-factors.1 In this way magnetic 
anisotropies may lead to different critical fields for external magnetic fields 
along different directions. This can be easily seen from the TBA analysis. 
For instance, if the rung interaction along the -z-axis is increased, i.e., by 
adding an extra term Az = J2f=i SjT? to the rung interaction, the critical 
fields for the magnetic field along the ^-direction are given by 

Hcl = J i + - A 2 - 4 J | | , 

Hc2 = J L + - A Z + 4 J | | . (3.1) 

For the magnetic field along the rc-direction they are given by 

tfci = y ( J ± + - A , - 4 J | | ) ( J ± - 4 J | | ) , 

Hc2 = y (Jx + \&z + 4J,|)(JX + 4J,|). (3.2) 

The experimental results1'5,6 indicate that Az is negligible. Analysis of 
such anisotropic behaviour can be found in Ref. 28. We therefore take the 
high field magnetization curves for the external field along the perpendicu
lar and parallel directions to the cleavage plane as evidence that the double 
chain ladder model is magnetically isotropic along the chain direction. In 
the strong coupling case two components of the triplet never contribute to 
the ground state at zero temperature, due to the strong single component 
contribution along the rungs. It has been suggested29 that the triplet exci
tation can be considered as an analogue of Bose-Einstein condensation for 
magnons30"33 for this class of compounds. The strongly coupled spin lad
der with magnon excitations for strong magnetic fields can be mapped to 
a one-dimensional XXZ-Heisenberg chain with an effective magnetic field. 
In this case the TBA equations reduce to only one level. The experimental 
magnetization curves5'6 suggest an energy gap A ?» 31.1 K and the critical 
field values Hci « 20 T and Hcl ss 50 T at T = 1.3 K. Fitting the zero tem
perature TBA critical fields and susceptibility to the experimental curves1 

gives the coupling constants J\\ = 5.5 K and J± = 57 K for the integrable 
spin ladder model (2.1). 
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0 50 100 150 200 250 300 
Temperature T(K) 

Fig. 3.1. Comparison between theoretical and experimental susceptibility curves versus 
temperature for the compound KCuCb. Circles and diamonds denote the experimental 
data extracted from Ref. 1 for an external field perpendicular or parallel to the chain di
rection. The solid and dashed curves are the corresponding susceptibility curves evaluated 
directly from the HTE at H = 0 T . Fitting results in the coupling constants J± = 57 K 
and J|| = 5.5 K with g = 2.29 (perpendicular), g = 2.05 (parallel) and fj,B = 0.672 K/T . 
The conversion constant is X H T E ~ 0 . 4 0 6 1 5 X E X P fixed in Ref. 15. 

3.1. Susceptibility 

The application of the HTE (2.3) for the free energy of Hamiltonian (2.1) 
indicates that the coupling constants J|| = 5.5 K and J±_ = 57 K also give 
excellent fits to the susceptibility. The temperature dependence of the sus
ceptibility curves is shown in Fig. 3.1. The solid and dashed lines denote 
the susceptibility for the external field perpendicular and parallel to the 
double chain direction, as derived from the free energy expression (2.3) 
with up to fifth order HTE. Here the Lande factors g = 2.29 (perpendic
ular) and g = 2.05 (parallel) for the external field direction were used. 
A rounded peak at T = 28.5 K in the zero magnetic field susceptibility 
curve indicates typical antiferromagnetic behaviour. The overall agreement 
with the experimental susceptibility curves is excellent. The susceptibility 
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Fig. 3.2. Magnetization versus magnetic field for the compound KCUCI3 with the same 
constants as in Fig. 3.1. This curve indicates the nature of the high field quantum phase 
diagram. The stiffness in the vicinities of the critical fields Hc\ and Hc2 is softened by 
increasing temperature. The critical fields predicted by the TBA are in good agreement 
with the experimental values. 

for the external field parallel to the chain direction has been examined via 
different theoretical models.3 Their conclusion favours a dimerized Heisen-
berg ladder structure with additional diagonal spin interactions, with the 
suggested coupling constants J\\ = Jd = 8.35 K and J± = 50.1 K for the 
double chain structure compound. However, their fitting constants result in 
an energy gap A « 38 K, which is much larger than the experimental value. 
We conclude that it is not necessary to introduce diagonal spin exchange 
interaction due to the strong dimerization along the rungs. The diagonal 
spin exchange interaction has only a weak effect on the low temperature 
behaviour. Moreover, the leg interaction is also suppressed by the relatively 
strong rung dimerization. 
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Fig. 3.3. Specific heat versus temperature for different magnetic field strengths for the 
compound KCuCl3 with the same set of coupling constants J±, J^ and g = 2.29. The 
solid and dashed curves are evaluated from the HTE for H = 0 T and H = 10 T. The 
conversion constant is C H T E a 4 . 5 1 5 C E X P -

3.2. Magnetization 

The magnetization is a particular interesting quantity to study as the field 
dependent magnetization curve leads to the prediction of the low tempera
ture phase diagram as well as magnetization plateaux. The high field mag
netization curve evaluated from the TBA at zero temperature is shown in 
Fig. 3.2. By the nature of the high temperature expansion, we are unable 
to produce these very low temperature, T < 5.5 K, magnetization curves 
from the free energy (2.3) for this particular compound. This highlights the 
complementary role of the TBA and HTE approaches. The magnetization 
curve indicates that the rung singlets form a nonmagnetic ground state if 
the magnetic field is less than the critical field value Hc\ = 22.74 T. The gap 
closes at this critical point. If the magnetic field is above the critical point, 
the lower component of the triplet becomes involved in the ground state. 
The magnetization increases almost linearly with the field towards the criti
cal point HC2 = 51.34 T, at which the ground state becomes fully polarized. 
This is in good agreement with the experimental values Hc\ w 20T and 
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ffc2«50T.5'6 

3.3. Specific Heat 

Fig. 3.3 shows the specific heat curves obtained from the HTE for the free 
energy at different magnetic field strengths. In the absence of a magnetic 
field the rounded peak indicates short range ordering with a large gap. At 
temperatures less than T = 17 K the exponential decay signals an ordered 
phase. The magnetic field is seen to only weakly affect the magnetic spe
cific heat at low temperatures, mainly because of the strength of the rung 
singlets. As yet there appears to be no experimental data for the specific 
heat. 

4. Conclusions 

We have examined the magnetization, susceptibility and critical fields of 
the double chain compound KCUCI3 via the integrable spin ladder model 
(2.1). The theoretical results obtained from Thermodynamic Bethe Ansatz 
and High Temperature Expansion calculations are seen to lead to good 
agreement with the experimental measurements for these quantities. We 
conclude that this compound exhibits strong rung coupling which leads to 
dimerized rung spins. This is consistent with the experimental analysis.1'2 

We have also presented the specific heat curves for different magnetic fields. 
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We formulate the geometric cluster algorithm in terms of geometric symmetry 
operations, and specify the conditions that make it possible to formulate a 
proof of detailed balance. The nonlocal nature of this algorithm allows the 
construction of algorithms with a reduced critical slowing down. We discuss the 
possibilities that arise for the construction of efficient algorithms and review 
some phenomena that can be investigated in more detail than is possible by 
simulation algorithms of a local nature. In particular we focus on systems 
with a conserved quantity which are subject to the Fisher renormalization 
phenomenon. 

1. Introduction 

Monte Carlo simulations of lattice models using local updates1 tend to be
come time consuming when large-scale correlations exist, such as in critical 
systems. A key parameter is the dynamic exponent z which describes the 
autocorrelation time TL of a critical system of linear size L as 

rL oc Lz . (1.1) 

Typically, models in d dimensions require of order Ld operations to update 
every particle in the system. For each new statistically independent state 

mailto:bloete@tnw.tudelft.nl
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one thus needs of order Ld+Z operations. While still dependent on the static 
universality class, one often finds that the dynamic exponent has a value 
z w 2 for simulation algorithms that use local updates. As a consequence of 
the positive value of z, the critical-slowing-down phenomenon occurs and 
makes it difficult to simulate large critical systems. 

The so-called cluster algorithms alleviate this problem, but they are 
not generally applicable. The possibility to construct such a nonlocal algo
rithm for a specific model system depends sensitively on the symmetries of 
the system2. A nonlocal cluster flip is actually a symmetry operation ap
plied to the cluster. While the first generation of cluster algorithms3-6,8 '7 

employed spin up-down or spin permutation symmetries, later algorithms 
were devised 9 '2 that employed lattice symmetries. The relative efficiency of 
cluster algorithms is due to the fact that cluster algorithms apply configura
tion changes in regions of appreciable size. More generally, it is determined 
by the cluster-size distribution. For instance, if some cluster algorithm gen
erates a distribution such that most clusters cover the whole system except 
some small regions, this would result only in trivial changes of the spin con
figuration. For reasons of efficiency, it may be argued that the percolation 
threshold of the cluster-formation process should coincide with the critical 
point. This leads to a wide distribution of cluster sizes, so that updates oc
cur on all length scales. In a number of cases, such as the Swendsen-Wang 
algorithm applied to the Potts model, this coincidence can be proved, while 
in other cases the critical point lies well within the percolating region of the 
cluster-formation process. In that case the clusters tend to be too large for 
maximum efficiency, but even in such cases a cluster algorithm may still be 
much faster than a Metropolis-like algorithm10. 

As one of the useful applications of the geometric cluster algorithm we 
mention the puzzling results presented a few years ago by Yamagata11,12. 
These results concerned three-dimensional lattice gases with nearest-
neighbor exclusion on two bipartite lattices, namely the simple cubic and 
the body-centered cubic lattice. These results, obtained by means of a local 
update algorithm on a supercomputer, suggested that the phase transitions 
of these two models did not belong to the Ising universality class. This re
sult was difficult to understand in view of the Ising-like symmetry (i.e., 
the symmetry of the two sublattices) and the fact that only short-range 
interactions are present. If Yamagata's result were correct, this would im
ply that our present understanding of universality is seriously flawed. To 
obtain a more clear numerical picture, it was necessary to include correc
tions to scaling in the analysis. This proved feasible on the basis of results 
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obtained by means of the geometric cluster algorithm9'13. It was found that 
the correction-to-scaling amplitudes are rather large in these two models, 
and they can therefore not be neglected. Furthermore it was found that the 
critical exponents agree accurately with the known values for the three-
dimensional Ising universality class. 

Since geometric cluster algorithms do not change the lattice variables, 
but only move them over the lattice, they are suitable to simulate models 
under a constraint, such as lattice gases with a conserved number of lattice-
gas particles. While local algorithms are available for this purpose, cluster 
algorithms may be more efficient by several orders of magnitude. For the 
above-mentioned geometric cluster simulations of three-dimensional lattice 
gases, it was however deemed necessary to remove the constraint and leave 
the particle density as a freely fluctuating variable. In order to solve the 
problem, the results of the new simulations should be compatible with the 
existing results that used local updates. For this reason, the cluster sim
ulations were supplemented by Metropolis-like sweeps. Although it is to 
be expected that this re-introduces some critical slowing down, the com
bined algorithms were still found to be very efficient in comparison with 
simulations restricted to local updates. 

To perform geometric cluster simulations with maximum efficiency, one 
may choose to work without local updates and thus to keep the particle den
sity fixed. However, it is important to realize that the conservation of par
ticle density has considerable impact on the critical behavior of the system. 
The theory for such constrained systems14 is known as 'Fisher renormal-
ization'. This theory, which was formulated for the thermodynamic limit, 
shows that the critical singularities of the temperature-like variables, such 
as the specific heat, are strongly suppressed. The key factor is here that 
the particle density is a temperature-like variable (and, in the cases of the 
aforementioned lattice gases, it is simply the variable that is conjugate 
to the reduced chemical potential, which parametrizes the temperature). 
According to Fisher renormalization, magnetic observables such as the sus
ceptibility are not affected by the constraint. 

The outline of this paper is as follows. In Sec. 2 we describe the geometric 
cluster algorithm and demonstrate that it satisfies the condition of detailed 
balance. We present some numerical data for the constrained specific heat 
in Sec. 3, and discuss the observed behavior in Sec. 4. 
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2. The geometric cluster algorithm 

The need for efficient algorithms to simulate various model systems is ob
viously stimulating efforts to devise new cluster algorithms. However, these 
nonlocal algorithms are not as easy to generalize as local (Metropolis-type) 
algorithms and thus restricted to a limited range of applicability. 

The success of such algorithms obviously depends on two conditions: 
first one needs a proof of detailed balance, so that one can be assured 
to obtain an unbiased sample of the pertinent ensemble; and second, the 
algorithm has to be efficient in comparison with local algorithms. 

In the proof of detailed balance of the single-cluster variant5 of the 
Swendsen-Wang algorithm3 algorithm, two essential conditions are that 
the cluster flip corresponds with a global symmetry of the Hamiltonian, 
and that the symmetry operation is self-inverse. For the Swendsen-Wang 
and related algorithms, this is the Potts permutation symmetry, including 
the Ising spin up-down symmetry. It is thus interesting to consider other 
symmetries, such as geometric symmetries of the lattice, to serve as the 
basis of a cluster algorithm. 

In order to investigate hard-core gases in continuous space, Dress and 
Krauth15 developed a cluster method using such geometric operations on 
the particle positions. Unfortunately, for hard disks, the percolation thresh
old of the cluster formation process occurs at some distance from the phase 
transition of the model15, so that the resulting algorithm is not very efficient 
in suppressing critical slowing down. 

For bipartite lattice gases with nearest-neighbor exclusion, the situa
tion is more favorable because the critical density is much lower. Indeed 
the geometric cluster algorithm, when applied to these systems, leads to a 
wide distribution of cluster sizes, and the critical distributions for different 
system sizes collapse on a single curve9. This indicates that the percolation 
process that forms the geometric clusters itself is also critical. 

We define the process forming a geometric cluster such as to expose the 
analogy with the Wolff algorithm. Let sites i, j and k map on i', f and k' 
under the geometric symmetry. Let us now interchange a neighbor k oi i 
with k', and consider the consequences for the energy of the pair of bonds 
(ik) and (i'k'). The change of the reduced energy (i.e., divided by kT) due to 
this interchange is denoted Ajfc. For instance, in the case of the Ising model 
we have, using obvious notation, Ajfc = K{siSk + Si'Sk' — SjSfc' — Si'Sfc)-
Then we proceed as follows: 

(1) choose a random lattice site i; i and i' belong to the cluster. 
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(2) interchange Si and s^ 
(3) for all neighbor sites k of i which do not (yet) belong to the cluster, do 

the following: 

(a) if Aik > 0 do the following with probability 1 — e~Aik: 

i. interchange s^ and s^ (k and k' included in cluster); 

ii. write k in a list of addresses (the stack). 

(b) if Aik < 0, do nothing. 

(4) read an address j from the stack; 
(5) execute the steps listed under 3, substituting j for i; 
(6) erase the address j from the stack; 
(7) repeat steps 4-6 until the stack is empty. 

When the stack is empty, the cluster is completed and moved. 

2.1. The proof of detailed balance 

The validity of the Swendsen-Wang algorithm3 may be shown on the basis of 
the Kasteleyn-Fortuin random-cluster decomposition16 of the Potts model. 
This can be viewed as a probabilistic process that splits the lattice in groups 
of sites called random clusters. While all spins in a random cluster have the 
same value, spins in different clusters are uncorrelated. This property can 
thus be used to randomly assign new spin values to the clusters. More 
generally the proof of validity of a Monte Carlo algorithm relies on two 
conditions, which are ergodicity and detailed balance. Ergodicity guarantees 
that, after a sufficient number of Monte Carlo moves, all configurations are 
generated with a nonzero probability. Detailed balance says that the ratio 
of the transition probabilities between two states must be equal to the 
ratio of the Boltzmann weights. The proof of ergodicity is simple in most 
cases, and here we focus on the proof of detailed balance. We formulate this 
proof for the case that there exists a geometric lattice symmetry, i.e., the 
Hamiltonian is invariant under this symmetry operation. The symmetry 
must be self-inverse, such as lattice inversions and translations over half 
the system size in the case of periodic boundary conditions. 

Let us now consider the probability T(S', S) of a cluster move which 
transforms a spin configuration S into S' by moving the spins contained in 
the geometric cluster C according to the pertinent lattice symmetry. 
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Fig. 2.1. Illustration of a cluster move involving a geometric cluster C = Ci U Ci- The 
move shown here projects C\ and C2 on one another, as a result of a translation over 
half the diagonal system size. In general, the cluster C may or may not consist of two 
disjoint regions. The proof of detailed balance does not depend on this possibility. 

As indicated in Fig. 2.1, it is well possible that the cluster C actually 
consists of two disjoint parts C\ and C2. The cluster flip then simply replaces 
C\ by Ci and it vice versa. This move transforms the original spin config
uration S into a new state S'. We consider the case that the Hamiltonian 
contains only pair interactions. The probability T(S', S) of this cluster flip 
can be written as Ti(C, S)Tb(C, S) where T\ denotes the internal probability 
that the cluster formation process connects all the sites inside C, and T\, 
denotes the probability that no site outside the boundary of C is included 
in the cluster. Since the cluster flip corresponds with a global symmetry of 
the Hamiltonian, the change of the reduced energy due to the cluster move 
comes only from the bond pairs (i, k) and (i', k') crossing the boundary of 
C. This energy change can be written as ^ A ^ = J^+ &ik + ^Z~^ik where 
]T counts only the bond pairs that increase in energy and ^ ~ those that 
decrease in energy. The cluster formation rules given above imply that 

T b ( C , S ) = e x p [ - ^ + A i f e ] . (2.1) 
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Next, we consider the probability T{S',S) = Ti(C,S')Th(C,S') of the re
verse cluster flip S' —• S. In view of the symmetry we have T|(C, S) = 
Ti(C,S'). The boundary probability T^(C, S') is now determined by the 
bond pairs whose energy increases due to the reverse move. These contri
butions add up to — ]T~Ajfc where the sum is denned for the original move 
S -> S'. Thus 

Th(C,S') = exp[+Y,~&ik] • (2.2) 

Combining these results one finds 

!gH=ex P [£ -A 4 f c ] (2-3) 
which is the condition of detailed balance for Boltzmann statistics. 

3. Some applications 

The Fisher renormalization approach, while originally formulated for the 
thermodynamic limit, can also be applied to derive the finite-size scaling 
behavior of the constrained specific heat17: 

C(L)=C00 + aL-\2yt-dl + --- . (3.1) 

Thus, if the unconstrained specific heat diverges (2yt — d > 0), the singu
larity is inverted. For two-dimensional Ising-like models, the unconstrained 
specific heat diverges as — In \T — Tc\, and the constrained specific heat is 
predicted as 

C{L)=Coc+a/lnL + --- . (3.2) 

This prediction was tested for the case of the two-dimensional Blume-Capel 
model, i.e. the spin-1 Ising model with variable chemical potential D of the 
vacancies. For this purpose, an arbitrary critical point was determined18 as 
K = 1, D = 1.70271780 (3) by means of a transfer-matrix analysis. The cor
responding vacancy density is pc = 0.3495830(2). The critical constrained 
specific heat was determined by means of geometric cluster simulations of 
finite Blume-Capel systems. We used systems with periodic boundary con
ditions, and spatial inversions about a randomly chosen center as a symme
try operation. Since the particle density is quantized in finite systems, data 
were averaged between two particle densities. Fig. 3.1 shows the numerical 
results. Remarkably, the singular part of the heat capacity appears to be 
proportional to l / ( lnL) 2 instead of 1/lnL as in Eq. 3.2. 
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Fig. 3.1. Constrained specific heat of the critical Blume-Capel model vs. L. 

As another test, we have simulated the hard-hexagon model19. This 
two-dimensional model has a temperature exponent yt = 6/5, and thus 
a diverging specific heat. Thus on the basis of the Fisher renormalization 
mechanism one expects the following finite-size dependence at the critical 
point: 

C(L) = Coo + aLd~2y* = Coo + aL~2/5 . (3.3) 

The results for the specific heat, obtained by geometric cluster simulations 
are shown in Fig. 3.2. Also in this case we find that the specific heat does not 
follow the prediction obtained from the Fisher renormalization mechanism. 
The singular part of the specific heat appears to be proportional to L - 4 / 5 , 
not to L~2/5 as predicted by Eq. 3.1. 

4. Discussion 

We investigated two two-dimensional models subject to a constraint, and 
determined the finite-size dependence of the critical specific heat. These 
results were compared with predictions obtained from applications of the 
Fisher renormalization procedure to finite systems. In both cases, the ob
served critical singularity is the the square of the predicted one. To explain 
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Fig. 3.2. Constrained specific heat of the critical hard-hexagon model vs. L. 

this discrepancy, one may consider the possibility that the leading singu
larity accidentally vanishes. The constrained specific heat contains contri
butions from the analytic part as well as from the singular part of the 
unconstrained free energy. However, we see no obvious reason why different 
terms should cancel. 

Thus one may consider other reasons that may explain the discrepancy. 
Here we mention the fact that the Fisher renormalization procedure sub
stitutes the constrained system by an unconstrained system, with the con
jugate parameter of the particle density adjusted such that the density of 
both systems coincides. In the case of finite systems, this is not completely 
correct, because the density of the unconstrained system is still allowed to 
fluctuate about its average. It is thus plausible that the critical singulari
ties of constrained systems are suppressed even further than the predictions 
obtained from Fisher renormalization. 

Acknowledgments 

We are much indebted to Profs. M. E. Fisher and J. M. J. van Leeuwen 
for valuable comments. This work is part of the research program of the 
"Stichting voor Fundamenteel Onderzoek der Materie (FOM)", which is 
financially supported by the "Nederlandse Organisatie voor Wetenschap-
pelijk Onderzoek (NWO)". 

, ! ! ,_ 

>., *•... 

\ 
* N 

•+... > , * S . 

_J l _ I I 



Applications of Geometric Cluster Algorithms 151 

References 

1. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. 
Phys. 21, 1087 (1953). 

2. J. R. Heringa and H. W. J. Blote, Phys. Rev. E57, 4976 (1998). 
3. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987). 
4. U. Wolff, Phys. Rev. Lett. 60, 1461 (1988). 
5. U. Wolff, Phys. Rev. Lett. 62, 361 (1989). 
6. C. F. Baillie and P. D. Coddington, Phys. Rev. B43, 10617 (1991). 
7. M. A. Novotny and H. G. Evertz in Computer Simulation Studies in Con

densed-matter Physics VI , eds. D. P. Landau, K. K. Mon and H.-B. Schiittler 
(Springer, Berlin 1993), 188. 

8. E. Luijten and H. W. J. Blote, Int. J. Mod. Phys. C6, 359 (1995). 
9. J. R. Heringa and H. W. J. Blote, Physica A232, 369 (1996). 
10. H. W. J. Blote, J. R. Heringa and E. Luijten, Computer Physics Communi

cations 147, 58 (2002). 
11. A. Yamagata, Physica A222, 119 (1995). 
12. A. Yamagata, Physica A231, 495 (1996). 
13. J. R. Heringa and H. W. J. Blote, Physica A251, 224 (1998). 
14. M. E. Fisher, Phys. Rev. 176, 257 (1968). 
15. C. Dress and W. Krauth, J. Phys. A28, L597 (1995). 
16. P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Jpn. (Suppl.) 26S, 11 

(1969). 
17. Y. Deng, J. R. Heringa and H. W. J. Blote, Phys. Rev. E70, 046111 (2004). 
18. X. Qian, Y. Deng and H. W. J. Blote, Phys. Rev. E72, 056132 (2005). 
19. R. J. Baxter, J. Phys. A 13, L61, (1980); J. Stat. Phys. 26, 427, (1981). 



152 

Equivariant Cohomology and Localization for Lie Algebroids 
and Applications 
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Let A be a Lie algebroid on a differentiable manifold M, and assume that 
A is equipped with an infinitesimal G-action compatible with a G-action on 
M, where G is a compact Lie group. We define an equivariant cohomology 
associated with these data and prove a localization formula together with a 
Bott-type formula. 

1. Introduction 

The tangent bundle TM to a differentiable manifold M has a remarkable 
property, namely, the space of its global sections has a Lie algebra struc
ture. The notion of Lie algebroid generalizes this fact: a Lie algebroid is 
basically a vector bundle A whose space of global sections r(^4) has a Lie 
algebra structure. To keep contact with the geometry of the base manifold, 
one requires the existence of a vector bundle morphism A —> TM, called 
the anchor, that when evaluated on global sections is a Lie algebra homo-
morphism. (A further assumption, a Leibniz rule for the bracket on T{A), 
is also imposed.) 

Standard examples of Lie algebroids are provided by integrable distri
butions in TM (that is, regular foliations of M), which is the case when 
the anchor is an injective morphism; by Poisson manifolds, where A is the 
cotangent bundle, and the bracket is the one induced on differential 1-forms 
by the Poisson tensor; and a very interesting example is given by the bun
dle of first order differential operators on a vector bundle E with scalar 
symbol, where the anchor is the natural projection onto the vector fields, 
and the bracket is given by the commutator of differential operators (this 
is the so-called Atiyah algebroid). 

One should also mention the fact that the datum of a Lie algebroid A on 
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a differentiable manifold M is equivalent to the specification of a superman-
ifold (M, J") (where the structure sheaf T is the sheaf of germs of sections 
of the exterior algebra bundle A" A*) together with an odd supervector field 
squaring to zero.16 

Recently there has been a surge of interest for Lie algebroids, for instance 
in connection with integrable systems, as a basic structure for denning 
new field-theoretic models,15 as a tool for generalizing several constructions 
(e.g., connections) to singular settings,10 and in relation with integrability 
properties of formal deformation spaces. 

Every Lie algebroid intrinsically defines a cohomology theory. A natural 
question arises when the Lie algebroid carries the action of some group G: 
can we define an equivariant Lie algebroid cohomology? The answer to this 
question comes from the general theory of G-differential complexes devel
oped by Ginzburg.11 It is interesting to note that from a physical viewpoint 
this equivariant Lie algebroid cohomology may be identified with the BRST 
cohomology: this happens for instance when we consider some Lie algebroids 
which are naturally defined on the moduli space of instantons. The rele
vant physical theory in this case is a version of topological supersymmetric 
Yang-Mills theory.13,5 

Once the equivariant Lie algebroid cohomology is defined, a natural fur
ther step is to study localization formulas that generalize the usual formula 
for equivariant (de Rham) cohomology. The purpose of this review is indeed 
to descrive such a formula, together with a related Bott-type formula. 

As far as the structure of this paper is concerned, in Section 2 I re
view the basic definitions and some constructions concerning Lie algebroid 
cohomology. Section 3 introduces the equivariant Lie algebroid cohomol
ogy. Moreover I describe there the localization formula for Lie algebroids. 
Section 4 is devoted to the description of a Bott-type localization formula. 
Results are just stated and commented; proofs may be found in Reference 
4. 

This paper reports on joint research made with L. Cirio, P. Rossi and 
V. Roubsov,4 whom I thank for allowing me to reproduce here our joint 
results. 

2. Lie algebroid cohomology 

Let M be a smooth manifold, and denote by 3£(M) the space of vector fields 
on M. The basic idea underlying the notion of Lie algebroid is to lift the 
Lie algebra structure on X(M) given by the usual Lie bracket [, ] to a Lie 
algebra structure on the space of global sections of some vector bundle on 
M. 
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Definition 2.1. A Lie algebroid over M is a vector bundle on A equipped 
with the following structures: 

(1) a vector bundle morphism a: A —> TM, called the anchor; 
(2) a Lie algebra structure on the space of global sections T(A), such that 

a: T(A) —> X(M) is a Lie algebra homomorphism, and the following 
Leibniz rule holds true for every a, (3 £ T(A) and every function / : 

{«,//?} = / { a , / 3 } + a(a)( /) /3 

(let us denote by { ,} the bracket in T(A)). 

D 

The cohomology complex (CA,S) associated with a Lie algebroid A is 
denned as CA = T(A'A*) with differential S 

P+1 

(<50(Qi. • • • > otp+i) = ^ ( - l ) l _ 1 a ( a j ) ( ^ ( a i , . . . , on,..., a p + i ) ) 
i=\ 

+ ^2(-l)t+3€{{ati, aj}, ...,ai,...,&j,..., ap+1) 
i<j 

if £ € CP
A. The cohomology of this complex will be denoted by H*(A). 

Cohomology classes in H'(A) are not apt to be integrated on the 
base manifold. For this purpose we need a version of cohomology which 
is twisted by an "orientation bundle".9 This is defined as the line bundle 
QA = de t (A)®n^, where m = dimM, and fi^ is the bundle of differential 
m-forms on M. For every s £ A one defines a map Ls = {s, •} =: F(A'A) —» 
r (AM) by letting 

k 

La($i A • • • A sfe) = ^2 si A • • • A {s, Si} A • • • A sk. 

Furthermore one defines a map D: T(QA) —• T(A* ® QA) by letting 

DT(S) = LS(X) ®n + X® Ca(s)n 

if r = X ® /i and s £ T(A). The twisted cohomology complex is defined as 
CA = T(A'A* <8> QA) where the differential 5 is defined by 

~8{i ® T) = 6£ ® r + (-l)des(«)£ ® £>T. 

The resulting cohomology is denoted by H'{QA)-
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If M is compact and oriented there is a nondegenerate pairing Ck
A ® 

Cr
A~k -> K denned as 

£ <g> (ip ® X (8) /it) i-> / (£/\i>,X)n 
JM 

which descends to cohomology, yielding a bilinear map 

H*{A)®Hr-{QA)-+R. (2.1) 

However this pairing may be degenerate in general. 
One also has a natural morphism CA % CA —> CA which is compatible 

with the degrees. Again this descends to cohomology and provides a cup 
product 

Hi{A)®H\QA)^Hi+\QA). (2.2) 

3. Equivariant Lie algebroid cohomology and localization 

In this section we introduce an equivariant cohomology for Lie algebroids, 
basically following the pattern exploited in Reference 11 to define equivari
ant cohomology for Poisson manifolds. 

Assume that a Lie group G (whose Lie algebra we denote by g) has an 
action p on M, and that there is a Lie algebra map b: g —> T(A) such that 
the diagram 

fl—^T(A) (3.1) 

p 

X(M) 

commutes, where p: g —* X(M) is the Lie algebra homomorphism 

£ C* d I 

? >-* 4 = ^TPexp(-t«)|t=0-
One should note that the cohomology complex and cohomology groups 
resulting from this construction may depend on b unless the anchor is in-
jective. 

If for a £ S g the point x € M is a zero of £* one has endomorphisms 

L(: TXM -» TXM, L s : Ax -» Ax 

given by 

Lc(t,) = [ f > ] , L€(w) = {6(0,w}. 
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We consider the complex 

21* = Sym ,( f l*)®r(AM*) 

with the grading 

deg(P ® (3) = 2 deg(-p) + deg(/3) 

and define the equivariant differential Sg : 21* —> 21*+1 

( * g ( P ® « ) ( 0 = P ( 0 ( W - ^ ) . 
If we denote 2l£ = k e r ^ , then (2t£.,<58) is a cohomology complex, whose 
cohomology we denote HG{A) and call the equivariant cohomology of the 
Lie algebroid A. 

By considering the complex 

Q* = 21* ® T(Q^) = Sym*(fl*) ® T(AM* ® QA) 

with a differential <5B obtained by coupling 6g with the differential D, 
and letting 0 ^ = ker Jg, one also has a twisted equivariant cohomology 
HQ(QA), and there is a cup product 

HG{A)®Hk
G{QA)^Hi+k{QA). 

We shall now write a localization formula for the equivariant Lie alge
broid cohomology. Let hbe a, G-invariant metric on M, and denote by fi the 
Riemannian measure associated with h. We introduce the skew-symmetric 
linear morphism Lj (p): Ap —> A* as the composition 

AP H AP A TPM ± T;M £ A; 

We call the exterior power Am^2h^(p) the Pfaffian of Lj(p), and denote it 
Pfa(L{(p))); it is an element in hm(A*p). If 7 = J2iui ® ^* ® A*' t o e a c n 

point p £ M^ we may thus attach the real number (residue) 

Ar,€(p) = (-l)rX!{[Pfa(L£(P))AWi(0]J^}[0](p) 

which turns out to be independent of the choice of the metric h. 

Theorem 3.1. Let M be a compact oriented m-dimensional manifold over 
which a compact Lie group G acts. Assume that £ € g = Lie (G) is such that 
the associated fundamental vector field £* has only isolated zeroes. Let A be 
a rank r Lie algebroid on M, and assume that a Lie algebra homomorphism 
b: g —> T(A) exists making the diagram (3.1) commutative. Finally, let 
7 € Q' be equivariantly closed, <J87 = 0. 
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Then if r < m one has JM 7(f) = 0, while if r > m the following 
localization formula holds: 

7(0 = (-27T)-/2 £ R^(p). 

D 

In the case of the "trivial" algebroid given by the tangent bundle with 
the identity map as anchor, this reduces to the ordinary localization formula 
for the equivariant de Rham cohomology (see e.g. Reference 1). 

4. A Bott-type formula 

One may show that Theorem 3.1 is a quite general statement that incor
porates a number of by now classical results. For instance, one can deduce 
from it Carell's localization formula7 for the actions of lifts of holomorphic 
vector fields on holomorphic vector bundles and the equivariant Riemann-
Roch theorem.6 It also implies a result which generalizes the classical Bott 
formula3 together with similar results by Cenkl and Kubarski.8'12 

Let A be a rank r Lie algebroid over a compact oriented manifold M, 
with anchor a. If p € M is a zero of the vector field a(a) for some a € T(A), 
one can define the Chern classes Ci(La,p) of the endomorphism La > p : Ap —> 
Ap by letting 

r 

^ C i ( L Q ) P ) A* = det(l + ALa,p) 
t = 0 

(cfr. Reference 3). By means of these classes one can define the real numbers 

<&{a,p) = $(c i (L a ! P ) , . . . , c r (L a , p ) ) . 

Note that since A is a real vector bundle, Chern classes of odd order vanish 
identically. 

The polynomial $ also allow us to attach a real number to the Lie 
algebroid A. By using a G-invariant metric h on M, and a G-invariant fibre 
metric H on A, which is compatible with h via the anchor map, one can 
construct an element to G H°(QA)- We define the real number 

$(A)= [ ^(\1(A),...,Xr(A))Uu 
JM 

where the Aj are the Chern-type characteristic classes of the Lie algebroid 
A.10 '4 We will show that this number only depends on the Lie algebroid A. 

/ 
JM 
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We also define the element in Sym*(g*) 

&(A) = [ $(\°(A),...,\Sr(A))Uu (4.1) 
JM 

= f $(<;1(Rv+fi),...,c;r(Rn+lj,))Uw. (4.2) 
JM 

Theorem 4.1. Let A be a Lie algebroid on a compact oriented manifold 
M, and let a £ T(J4) be any section such that the vector field a(a) has 
compact integral curves and has isolated zeroes. Let <J> be a homogeneous 
polynomial in r = rk (A) variables. Then ifr = dim M one has 

«/ ,N / „ s m v ^ $(a(a),p) , , „. 
${A) = (-27T) > J2 A,l/2r ( 4 3 ) 

P det ' L o ( o ) i P 

(where the sum runs over the zeroes of a at which the anchor is an isomor
phism), while $(A) = 0 if the condition r = d imM does not hold. 

D 

Here we have set 

$(a(a),p) = $(ci(L0(Q ) i P) , . . . , c r (L a ( a ) i P ) ) . 

As claimed before, this result shows the independence of the character
istic number $ ( J 4 ) on the fibred metric H on A. The contributions in the 
right-hand side of Eq. (4.3) are the same as in the usual Bott formula for 
the vector field a(a), but the sum is done on a smaller set of fixed points. 

Remark 4.1. If r = d imM but 2deg($) ^ d imM, the left-hand side of 
Eq. (4.3) vanishes by dimensionality reasons, and this provides identities 
among the terms in the right-hand side. A 
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We consider a directed percolation process on an M. x N rectangular lattice 
whose vertical edges are directed upward with an occupation probability y 
and horizontal edges directed toward the right with occupation probabilities x 
and 1 in alternate rows. We deduce a closed-form expression for the percolation 
probability P(x,y), the probability that one or more directed paths connect the 
lower-left and upper-right corner sites of the lattice. It is shown that P(x,y) 
is critical in the aspect ratio a = M/Af at a value ac{x, y) = [1 — y2 — 
x(l — y)2]/2y2 where P{x, y) is discontinuous, and the critical exponent of the 
correlation length for a < ac(x,y) is v = 2. 

Key words: Directed Percolation, Critical behavior. 

An outstanding unsolved problem in stochastic processes is the con
sideration of directed percolation 1 '2. Directed percolation is a Markovian 
bond percolation process in which bonds are directed such that only clusters 
with a "flow" are relevant. Very few exact results of directed percolation 
are known. In 1981 Domany and Kinzel 3 solved one version of a directed 
percolation where the occupation probability is fixed at unity in one spatial 
direction of a rectangular lattice. The problem was subsequently reformu
lated and solved as a random walk by one of us and Stanley 4. However, 
the Domany-Kinzel model is essentially of a one-dimensional nature due 
to the restricted freedom in one spatial direction. To uncover the genuine 
nature of a two-dimensional directed percolation it is necessary to relax this 
uni-directional restriction. 
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As a first step toward this goal we consider in this paper a directed 
percolation in which the unity percolation probability occurs in every other 
row of a rectangular lattice. We deduce a closed-form expression for the 
percolation probability and analyze its critical properties for large lattices. 

We first describe our model. Consider a 2-dimensional rectangular net 
of (M + 1) x (2N + 1) sites with an aspect ratio 

a = M/2N. (1) 

Number the sites by (m, n) with m = 0,1, • • • M, n = 0,1, • • • 2N as shown 
in Fig. 1. Consider a bond percolation process on the lattice with vertical 
edges occupied with a probability py = y and horizontal edges in the n-th 
row occupied with a probability 

px = 1, n = odd 

= x, n = even. (2) 

Direct edges in the upward direction and toward the right. Occupied 
edges form directed paths if traced along the arrows. In ensuing discussions 
we shall refer to percolation configurations as bond configurations. A bond 
configuration is percolating if it contains one or more directed paths connect
ing the two opposite corner sites (0,0) and (M,2N). A typical percolating 
configuration is shown in Fig. 1. 

(0,0) 1 (1,0) ! (2,0) 1 (3,0) 1 (4,0) 1 (5,0) 

Fig. 1. A typical percolating configuration on a 6 x 5 lattice (M = 5, N = 2). Open 
circles denote lattice sites. Oriented edges are occupied with weights shown. Empty edges 
carry weights 1 — x and 1 — y in horizontal and vertical directions respectively. 
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In a bond configuration there are nx (resp. MN — nx) occupied (resp. 
empty) horizontal edges, and ny (resp. 2(M + 1)JV — ny) occupied (resp. 
empty) vertical edges. Then the percolation probability, the probability that 
a bond configuration is percolating, is 

PM,2N(X,V)= Yl xn*(l-x)MN-n*yn«(l-y)2(M+VN-nv (3) 
perc conf 

where the summation is restricted to percolating bond configurations. It is 
clear that 0 < PM,2N(x,y) < 1 since the summation (3) is identically 1 if 
unrestricted. It is also clear that Poo,2N(x,y) = 1 and PO,2N(X,V) = 0. Our 
interest is to investigate how does P change from 1 to 0 as a varies, and 
whether the change is a sharp transition. 

We state the main result as a Proposition: 

Proposition: 

For any x G [0,1] and y € (0,1), there exists a critical aspect ratio 

ac(x,y) = [l-y2-x(l-y)2]/2y2 (4) 

such that 

{ I if a >ac(x,y) 
0 if a <ac(x,y) (5) 

^ if a = ac(x,y). 

Moreover, for a < ac(x,y), we have the asymptotic behavior 

P(2aN, 2N) ~ e~2N/i (6) 

where 

£ ~ ( a c - a ) - 2 . (7) 

Remarks: 

1. Equation (6) defines £ as the correlation length and Eq. (7) gives the 
correlation length critical exponent v — 2. 

2. For x — 1 our model reduces to the Domany-Kinzel model 3 '4 on an 
(M + l) x (2N + 1) lattice and (4) leads to ac = (l—y)/y in agreement with 
previous result. For x = 0 our model is again a Domany-Kinzel model but 
on an (M + 1) x (N+1) lattice with a vertical edge occupation probability 
y2. Our result gives the critical aspect ratio 2ac = (1 — y2)/y2 again in 
agreement with 3 '4. 
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Proof of the Proposition: 

The main body of this paper is the proof of the Proposition. 

There are 2N rows of vertical edges in the lattice. Number these rows 
from 1 to 2N starting from the bottom. An occupied vertical edge in a 
bond configuration is wet if it lies on a percolating path connecting (0,0) 
and (M,2N), and is primary wet if it is the first wet edge (in a row of 
vertical edges) counting from the left. In the bottom row of vertical edges 
in Fig. 1, for example, there are two wet edges and the primary wet edge 
is the one connecting sites (1,0) and (1,1). In a percolating configuration 
there is one primary wet edge in every row and these edges carry an over
all occupation probability y2N. Since a bond configuration is percolating 
whenever a vertical edge in the 2iV-th row is primary wet, which can occur 
at any of the m-th horizontal positions m = 0,1, • • • , M, we have 

M 

PM,2N{X,V) = y2N ^2 wm}2N- (8) 
m=0 

Here y2nwm^n is the probability that the primary wet edge in the (2n)-th 
row occurs at the horizontal position m. 

We first establish a Lemma: 

Lemma: 

1 f dt 
Wm>2n =2rif t™+i(l-at + bt*r (9) 

where the contour of integration is around the unit circle and 

a = l-y2 + x(l-y)2, b = x(l - y)2. (10) 

Proof of the Lemma: 

It is not difficult to see that the function wmt2n(x, y) satisfies the recur
sion relation 

m 

Wm,2n = YlWk,2Wm-k,2n-2 (H) 
k=0 

and the initial condition 

Wmfi = SKr{m,0). (12) 
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Define generating functions 

oo 

Wl{t)=YJwm,2t
m (13) 

m=0 
oo oo 

W2{t,s)=Y,Y,w^ntmsn. (14) 
m=0 n—0 

Substituting (11) into (14) and changing the order of summation by using 

E™=o !£™=o = Z)£Lo 12m=n' w e O D t a i n af t e r some rearrangement and the 
use of (12), 

W2(t,8) = l + sWi{t)W2(t,s) 

which yields 

We can now invert (14) to obtain 

1 I dt I ds f 1 

Wm'2n ~ (2^i)2 f¥+if7*i\l-8Wi(t) 

where the contour of integration is around the unit circle. 

To compute W\(t) we need to evaluate wmt2(x,y) for an (m + 1) x 3 
lattice. There are now 2 rows of vertical edges. As aforementioned y2wm,2 
is the probability that (0,0) is connected to (m, 2) with the primary wet 
vertical edge in the top row occurring at m. However the primary wet 
vertical edge in the bottom row can be at any j in 0 < j < m. Denote the 
probability for this to occur by y2Aj(l — j/)"1 -- 'xm~i. Then we have 

m 

wma = YlxjO--yr~ixm-:i, (IT) 

where the factor (1 — y)m~ixm~i ensures that the primary wet edge in the 
top row is at m as shown in Fig 2(a). Particularly, we have wo,2 = Ao = 1. 

The factor Xj in (17) satisfies a recursive relation which can be written 
as 

\j = (l-y)\j-i+y(l-x)(l-y)wj-li2, j = 1,2, • • • ,m. (18) 

(15) 

(16) 
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c—>-

1-v 

O" 

1-v n i 

l-x 

j-1 j-1 

Fig. 2. Construction of recursion relations, (a) Construction of (17). (b) Construction 
of (18). Occupied edges are shown as oriented edges; dotted edges can be either occupied 
or empty. To each row of vertical edges there is an additional factor y not shown. 

The two terms on the right-hand side of (18) arise from the two possibilities 
that the vertical edge connecting (j — 1,0) and (j — 1,1) is either empty 
(with probability 1 — y) or occupied (with probability y) as shown in the 
two panels in Fig. 2(b). In the latter case the factor (1 — a:)(l — y) ensures 
that the site (j — 1,1) is not on a percolating path. 

To solve the coupled recursion relations (17) and (18), define the gen
erating function 

oo 

A(t) = £A 3 ^. 
3=0 

Multiplying (17) and (18) by tm and £ J_1 , respectively, and summing over 
m and j — 1 from 0 to oo, we obtain after some manipulation 

y2A(i) 

l - a ; ( l - j / ) t ' 

(l-y)A{t)+y{l-x)(l-y)W1(t). 

This gives 

Wi(t) 1 

(19) 

(20) 
1 - at + bt2 

after eliminating A(t) where a, b are given in (10). The substitution of (20) 
into (16) establishes the Lemma. 

We now continue the proof of the Proposition. 

Substitute (9) into (8) and carry out the summation in m. This leads 

to 

PM,2N(x,y) = y 2N dt 
2TTI Jc+ (t - 1)(1 - at + bt2) N 

1 
tM+l 

(21) 
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where the contour C+ is a circle enclosing the unit circle. Let t\ and ti 
be the two roots of 1 - at + bt2 = 0, both of which are real. We have 
t\t2 = 1/6, t\ + ti = a/b, and hence 

( t i - l ) ( * 2 - l ) = t i t 2 - ( t i + * a ) + l 
1 o y 

= 6 - ; + 1=(r^>0' 
so both t\ and tn, lie outside the unit circle. We can therefore choose the 
radius of C+ to be greater than 1 but smaller than both t\ and ti so that 
C+ encloses only the simple pole t = 1 in (21). It follows that the first term 
on the right-hand side of (21) picks up only the residue at t = 1 which is 

„2JV 
V = 1 , 

and we obtain 

(l-a + b)N 

PM,2N(X,V) = 1 - IM,N 

where 

lM'N ~ L j c + (t- 1)^+1(1- at + bt*)"- (22) 

,,2AT 

Tc+ Jt^i)tM+1(l-at + bt2)N 

Note that since |i| > 1 along C+ (22) leads to the expected result Poo,2N = 
1. 

To further evaluate IM,N we introduce z = 1/t to write 

y™ r zM+™dz 
lM<N = 2 ^ J c _ (z-l)(z*-az + b)» ( 2 3 ) 

where the contour C— is now within the unit circle. 

For M, N large and fixed aspect ratio a = M/2N, we can rewrite (23) 

as 

IM,N 
2ni 

where 

1 / dz r , , -,1N 

^£_i3iM (24) 

y2z2+a 

fa{z) = -o —r-
z2 - az + b 

The integral IM,N can be evaluated using the method of steepest descent 5 '6 

by deforming the contour to pass a point z = ZQ where fa(z) is stationary. 
To the leading order this gives IM,N ~ [fa(zo)]N• Moreover, since IM,N < 1, 
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we must have fa(zo) < 1 with the equal sign holding at fa{zo) = 1. Thus 
a transition occurs at ZQ = 1. 

Now 
,,2^1+a r 

az2 -(l + a)az + (2 + a)b 
, ( 2_H-a 

fU*) = V 
(z2 -az + b)2 

and the stationary point ZQ is determined by 

azl - (1 + a)a z0 + (2 + a)b = 0. 

The critical condition ZQ = 1 now gives 

a = - 7 = ac(x, y) (25) 
1 — a + b 

where ac(x,y) is given in (4). It is readily verified that we have 
(da/dz)z=i < 0 along (25). Thus, for a > ac(x,y), the stationary point 
ZQ lies within the unit circle so we can deform C— continuously to pass 
ZQ, and obtain haN,N = [ /a^o)]^ ~ 0. This gives P2aN,N(x,y) ~ 1 which 
establishes the first line of (5). 

On the other hand, for a < ac(x,y), ZQ occurs outside the unit circle 
and when the contour C— is deformed to pass ZQ it must cross the simple 
pole at z = 1 and picks up the residue at the pole, which is equal to 1. This 
gives I2aN,N ~ 1 - [fa(zo)]N and PiaN,N{x,y) ~ [fa(z0)]

N ~ 0 for large 
N. This establishes the second line of (5). 

For a = ac(x, y), ZQ is on the unit circle so the crossing of the contour 
at z = 1 picks up only half of the residue, namely, 1/2. This establishes the 
third line of (5). 

Finally, for a < ac(x,y), the method of steepest decent 5 '6 dictates that 
we have 

[foc(zo) 
N Nln[fa(z0)] ^ -NCi(x,y)(z0-l)

2 ^ -NC2(x,y)(a-ac)
2 

e " ° l " " ~ e "-H-.»A-U */ ~ e 

where expressions of C\(x,y) and C2(x,y), which do not affect our conclu
sions, can be explicitly evaluated. This establishes the asymptotic behavior 
(6)wi the = 2/ [C 2 (x ,2 / ) (a-a c ) 2 ] . 

We have completed the proof of the Proposition. 

In summary, we have obtained a closed-form expression for the percola
tion probability PM,2N{X,V) for the directed percolation process in which 
the occupation probability is y in the vertical direction and alternately x 
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and 1 in the horizontal direction. For M, N large, the percolation proba

bility exhibits a critical behavior at a = ac. The correlation length £ for 

a < ac is found to diverge with the critical exponent v = 2. While these 

properties are similar to those found in the Domany-Kinzel model 3 '4 , our 

analysis permits the relaxation of the restriction of unit occupation proba

bility in one spatial direction. It is hoped tha t the analysis serves as the first 

step of further relaxation in percolation probabilities, eventually leading to 

an understanding of genuine 2-dimensional directed percolation processes. 
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In a Borel subalgebra U(B) of the 5/2 loop algebra, we introduce a highest 
weight vector * . We call such a representation of U{B) that is generated by 
* highest weight. We define a generalization of the Drinfeld polynomial for a 
finite-dimensional highest weight representation of U(B). We show that every 
finite-dimensional highest weight representation of the Borel subalgebra is irre
ducible if the evaluation parameters are distinct. We also discuss the necessary 
and sufficient conditions for a finite-dimensional highest weight representation 
of U(B) to be irreducible. 

1. Introduction 

In the classical analogue of the Drinfeld realization of the quantum s^ loop 
algebra, Uq(L{sl2)), the Drinfeld generators, x^ and hk for k G Z, satisfy 
the following defining relations1'2,9: 

\hj,xk \ = ±2x-+k , [Xj , xk J = hj+k 1 

[^•,^fc]=0, [xf,xf]=0, fo r j , f ceZ . (1.1) 

In a representation of U(L(sl2)), a vector fl is called a highest weight vector 
if 0. is annihilated by generators x"^ for all integers k and such that 0. is a 
simultaneous eigenvector of every generator of the Cartan subalgebra, hk 
(k G Z) 1'2. We call a representation of U{L(sl2)) highest weight if it is 
generated by a highest weight vector. For a finite-dimensional irreducible 
representation we associate a unique polynomial through the highest weight 
dk . It is shown that any given irreducible highest weight representation is 
finite-dimensional if and only if it has the Drinfeld polynomial 1. 

Recently it was shown that the XXZ spin chain at roots of unity has the 
SI2 loop algebra symmetry 5>7>10-12. Fabricius and McCoy has conjectured 

http://ac.jp
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12 that every Bethe ansatz eigenstate should be highest weight of the s^ 
loop algebra, and also that the Drinfeld polynomial can be derived from 
the Bethe state. It is explicitly shown that regular XXZ Bethe states in 
some sectors are indeed highest weight 5. However, it is still nontrivial how 
to connect the highest weight vector with the Drinfeld polynomial. In fact, 
the Drinfeld polynomial is defined for an irreducible representation not 
for a highest weight vector 1. Furthermore, there exist finite-dimensional 
highest weight representations that are reducible and indecomposable. It 
has been shown that a given highest weight representation is irreducible if 
the evaluation parameters are distinct 3 '6. Here, we shall define evaluation 
parameters in §3. Thanks to the theorem, we solve the connection problem 
at least for the case of distinct evaluation parameters. 

In this paper, we discuss a generalization of the theorem to the case 
of a highest weight representation of a Borel subalgebra of U(L(sl2)). The 
generalization should play a key role in the study of the spectral degeneracy 
of the XXZ spin chain under twisted boundary conditions 4 '14,8. Let us 
consider the subalgebra generated by generators ho, XQ and x± satisfying 
the relations (1.1). We call it a Borel subalgebra of U(L(sl2)), and denote 
it by U(B). It has the following generators: 

hk , x'l for k £ Z>0 , x^ for/c £ Z > 0 . (1.2) 

We define a highest weight vector of the Borel subalgebra U(B) by such a 
vector ^ that satisfies the following relations: 

xjj"* = 0, hk<S> = dk<S>, f o r f c e Z > 0 . (1.3) 

We call the representation of U(B) generated by ^ highest weight and the 
set {dk} the highest weight. Here we note that do is not necessarily an 
integer, since x~^i does not exist in U(B). In §2 of the present paper, we 
derive a useful recursive relation of x^$> for k £ Z>o- In §3 we introduce 
a generalization of the Drinfeld polynomial for a finite-dimensional highest 
weight representation of the Borel subalgebra U(B). In §4 we show that 
every highest weight representation of the Borel subalgebra with distinct 
and nonzero evaluation parameters is irreducible. 

Throughout the paper, we denote by ^ a highest weight vector of the 
Borel subalgebra U(B) with highest weight dk and by VB the representa
tion generated by it, i.e. VB = U{B)^. We also assume that VB is finite-
dimensional. 
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2. Sectors of VB and nilpotency 

Lemma 2.1. Let us define the sector of ho = do — 2n in VB for an integer 
n > 0 by the subspace consisting of vectors vn £ VB such that ho vn = 
(do — 2n)vn. Here we recall ho^ — do^. Then, VB is given by the direct 
sum of such sectors. Any vector vn in the sector of ho — do — 2n is expressed 
as a linear combination of monomial vectors xj • • • xjn \I>. 

Proof. It is clear from the PBW theorem 13. • 

We note that generator x~[ is nilpotent in any VB-

Definition 2.1. We say that generator x~[ is nilpotent of degree r in VB, 
if (x]-) r + 1# = 0, while (xj)j^ ^ 0 for 0 < j < r. 

The degree r of nilpotency for generator x~[ gives the largest n for non-
vanishing sectors of ho = do — 2n, as shown in the next proposition. 

Proposition 2.1. If generator x± is nilpotent of degree r, then the sector 
of h = do — 2r is one-dimensional: every monomial vector in the sector is 
proportional to (x~^)r^> with some constant Ckl,...,kr: 

x^---x^ = C f c l i . . . , f c r (^ ) r *, for fci,...,A;r eZ>0. (2.1) 

Furthermore, sectors ofh = do — 2n for n > r are of zero-dimensional. For 
instance, we have xk •• -xk ^ = 0 for fci, • • • , kr+\ £ Z>o • 

Proof. Setting m = r in lemma 2.3, we have eq. (2.1). For the case of 
n > r we show it from lemma 2.3 where we set m = n. D 

Let B+ be such a subalgebra of U(B) that is generated by x~£ for k £ 
Z > 0 . We define (X)™ by Xn = Xn/n\. 

Lemma 2.2. Let m and t be integers satisfying 0 <t < m + 1. In the Borel 
subalgebra U(B), for k\,... ,kt,n £ Z>o, and £ £ Z>o, we have 

xe \xn) xfcj xkt 

= ~^+2n^n){m-t-l)^kl---X-kt+{x-)^-^X-ki--.X-kth,+n 

+ £(*") ( m + 1 - t ) II ^•he+kj+(-2)J2(^){m-t)xi+n+kj n ** 

+(-2) £ O O ^ - V + ^ + f c , , I I **, ™dU(B)B+ (2.2) 
l<Jl<J2<t i=l;iy£jl,J2 
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Lemma 2.3. Suppose that x~[ is nilpotent of degree r in VB, and m be an 
integer with m > r. Let us take a positive integer p satisfying p < m. We 
have 

K ) m - p ^ - • • • **„* = 4?,.. ,fep ( *rr* , (2.3) 

for any set of positive integers fci,..., kp. 

Proof. We prove (2.3) by induction on p by making use of eq. (2.2). • 

Lemma 2.4. The following recursive formulas on n hold for n > 0: 

(An): (x+)("-1)(^)(n) = £"=i(-l)''"1*7(4)(n- ,')(0(n"J') ™>d 
U(B)B+. 

(Bn): 
n ( 4 ) ( " ) ( ^ ) ( n ) = £ ] U ( - 1 ) J " ~ % ( a ; o ) ( n ~ J ) ( s r ) ( n ~ i ) rnodU{B)B+ 

(Cn): [hi ,04) ( m )( a ; i~) ( m )] = ° modU(B)B+ form<n. 

Making use of (Bn) of lemma 2.4 inductively, we show that ^ is a 
simultaneous eigenvector of operators {x^)^(x^Yn^ for n > 0. For a given 
positive integer k, we denote by Afc the eigenvalue: (X'Q)^^^)^'® = Afc$. 

Lemma 2.5. If x\ is nilpotent of degree r inVs, we have 
r 

x~+1 M> = Y.i-lY-^r+i-jXj * • (2.4) 
J = l 

Moreover, it leads to the following: 
r 

x;+1+p* = Y/(-V
r-J*r+x+P-jx;+py, forpeZ>0. (2.5) 

j=\ 

Proof. Relation (2.4) is derived from (Ar+i) of lemma 2.4. Making use of 
2V+i+n = {-1)~l[hn,x~+x} and (2.4), we derive (2.5). D 

Proposition 2.2. Suppose that x± is nilpotent of degree r in VB- In the 
sector of ho = do — In with 0 < n < r, every vector is expressed as a 
sum of monomial vectors x^ • • • x^ty for integers ki,k2,.--,kn satisfying 
l<ki<k2<---<kn<r. 

Proof. It is clear from (2.5). • 
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3. Generalized Drinfeld Polynomials P^,(u) for VB 

Definition 3.1. Suppose that x\ is nilpotent of degree r in VB- We define 
a polynomial Py{u) by 

r 

P*(u) = J2M-u)k. (3.1) 
fc=0 

Definition 3.2. If polynomial P*(u) of VB is factorized as 
s 

P*(u)=l[(l-aku)m*, (3.2) 
fe=i 

where a i , 0 2 , . . . , a s are distinct, and their multiplicities are given by 
mi,m.2, . . . , m s , respectively, then we call a,j the evaluation parameters 
of highest weight vector \I/. We denote by a the set of s parameters, 
a i , a 2 , . . . ,as. 

We note that r is given by the sum: r = m\ + • • • + ms. Let us define 
parameters dj for i = 1,2,.. . , r, as follows: 

Oj = 0^ if mi + m2 H h m^-i < i < mi H h mfc_i + m^ . (3.3) 

Then, the set a = {dj \j = 1,2,..., r} corresponds to the set of evaluation 
parameters Oj with multiplicities rrij for j = 1,2,..., r. 

4. Generators with parameters 

4.1. i o o p algebra generators with parameters 

Let vl be a set of parameters such as {a\, 0:2,..., a m } . We define generators 
with m parameters a;* (J4) and hm(A) as follows 6: 

m 
xm(A) = ^Z(-1)k^t-k J2 ahai2 • • • aik , 

k=0 {u i fc}c{l,...,m} 
m 

M ^ ) = £ ( - l ) f c f c m - f c S S ^ - a v (3-1) 
k=0 {»i,...,ifc}C{l m} 

In terms of generators with parameters we generalize the defining relations 
of the si? loop algebra. Let A and B are arbitrary sets of m and n param
eters, respectively. The operators with parameters satisfy the following: 

[x+ (A), x - (B)} = hm+n (AuB), [hm (A), xt (B)] = ±2x± +„ (AuB). 
(3.2) 
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By using the relations (3.2), it is straightforward to show the following: 

[ 4 ( A ) , (*-(£))(")] = ( x - 0 B ) ) ( " - % + m ( A u B ) 

-xJ+2m(A\JBUB)(x-(B))&-2\ 

[he(A), C4(l?))<">] = ±2(x± (B)Yn-^xf+m(A U B). (3.3) 

Here the symbol (X)^ denotes the nth power of operator X divided by 
the n factorial, i.e. (X)W = X/n\ . 

Let the symbol a denote a set of TO parameters, ctj for j = 1,2,.. . , m. 
We denote by vlj the set of all the parameters except for ctj, i.e. Aj = a \ 
{«j} = { a i , . . . , a j_ i , CKJ+I, . . . , a m } . We introduce the following symbol: 

pf(a)=xi_1(Aj) for j = 1,2,. . . , TO. (3.4) 

Here we note the following: 

Lemma 4.1. 7/x~(A)fi = 0 for some set of n parameters, A, then we 
have x~+m(A U B)£l = 0 for any set of m parameters, B. 

Hereafter, we denote by afm the set of parameter aj with multiplicity 
m, i.e. afm = {aj,aj,... ,aj}. Moreover, in the case of TO = 1, we write 
xi (af1) simply as xf (aj). 

4.2. Borel subalgebra generators with parameters 

In the case of the Borel subalgebra U(B), we do not have generator XQ in 
U(B). In order to introduce generators with parameters for U(B), we thus 
need some trick. 

For a given set of TO parameters, aj for j = 1,2,.. . , TO, we introduce 
the extended set of parameters as follows: 

a{n) = a U {0®"} . (3.5) 

Here we recall that a®n denotes the set of a with multiplicity n. We also 
introduce the following symbols: 

pf(aW)=xi(A?)) for j = l , 2 , . . . , m . (3.6) 

It is easy to show 

£ ^ 1 '— = x ± + 1 _ n ( { a n + 1 , . . . , am} U {0}) (1 < n < m). (3.7) 
j = 1 ilk=l;k^jakj 

It follows inductively on n that x^ for 1 < k < TO are expressed in terms 
of linear combinations of pj(a^) with 1 < j < TO. 
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The reduction relation (2.4) is expressed as xr+1(a^')^ = 0. However, 
if we have 

xj+1{a™)* = 0, (3.8) 

making use of (3.8), we can express monomial vector x~ x~ • • • xj \I> 
of any set of positive integers, ji,...,jn, as a linear combination of 
/0J~ (a^)p^ ( a ^ ) • • • p]I (aW)\I/ over some sets of integers with 1 < 
ki,..., kn < v. 

5. Highest weight representations 

5.1. The case of distinct evaluation parameters 

Let us discuss the case where all the evaluation parameters a,j have mul
tiplicity 1, i.e. rrij = 1 for j = l,...,s. We call it the case of distinct 
evaluation parameters. Here we note that s = r. We therefore have 

V i ( a ( 1 ) ) * = 0. (3.1) 

Lemma 5.1. If all evaluation parameters a,j are distinct (mj = 1 for all 
j), we have 

(p-(a^))\ = 0. (3.2) 

Proof. First, we show 

4(p7(a ( 1 )))2* = °- (3-3) 
From eq. (3.3) we have 

4 (PJ(aW))W* = xJiA^h^A?)* ~ ̂ ( ^ ? ) U A™)9 • 

We set ao = 0. In terms of akj = &k — Gj> we have 

s 

hs(A?))*= n a^*> 
k=0;ky£j 

and using eq. (3.1) and lemma 4.1 we have 

s 
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We thus obtain eq. (3.3). Secondly, we apply (xj)^ r_1^(a;^(aj))( r_1) to 
(pj(a^))2^. The product is given by zero since it is out of the sectors of 
V<j due to the fact that (r — 1) + 2 > r and proposition 2.1: 

(a:+)( ' -1)( a : r(a J-)) ( r-1 )(p7(a ( 1 )))2* = 0. 

We then show that the left-hand-side is given by 

Here, through induction on n and using Bn of lemma (2.4), we show 

[ (4 ) ( n ) ( ^ r (%- ) ) ( n ) ^7 ( ° C 1 ) ) 2 ]* = ° (" < r - 1)-
Since a/y 7̂  0 for A: ^ j , we obtain eq. (3.2). • 

Lemma 5.2. Let xj~ 6e nilpotent of degree r inVs- In the sector of ho = 
do — In for an integer n with 0 < n < r, every vector vn is written as 

n 

vn= £ Cju...tJnl[pJt(a^)<i>. (3.4) 
l < j l < - < J n < * t= l 

Suppose that Xr ^ 0. Then, if vn is zero, all the coefficients Cjlt...jn in 
(3.4) are given by zero. 

Proof. In terms of pj(a^), any vector in the sector is expressed as a linear 
combination of p~ (a^) • • • pj {a,^) ^. From lemma 5.1 we may assume 
1 < j i < • • • < j n < s. For a set of integers with 1 < i\,...,in < s, 
multiplying both sides of eq. (3.4) with pfia^) • • • pf {a^), we have 

pUa^)---pi(a^)vn = Ch,...,infl n " l x * 
t=lfc=0;M»t 

Therefore, if vn = 0, all the coefficients Cjlt... J n are given by zero. D 

From lemmas 5.1, 5.2 and proposition 2.1 we have the following: 

Proposition 5.1. If evaluation parameters &j of $ are distinct, the set 
of vectors n"=i Pjt(

a^) * f° r 1 ^ h < • • • < jn < s gives a basis of the 
sector of ho = do — In in VB • 

Theorem 5.1. Let VB denotes the finite-dimensional representation of 
U(B) generated by a highest weight vector 9. If x\ is nilpotent of degree 
r in VB and ^ has distinct and nonzero evaluation parameters a\,... ,ar, 
then VB is irreducible. 
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Proof. We show that every nonzero vector of VB has such an element of 
the loop algebra that maps it to \&. Suppose that there is a nonzero vector 
vn in the sector of ho = do — In that has no such element. Then, we have 

for all monomial elements x~£ • • • x^ . Here vn is expressed in terms of the 
basis vectors p~x ( a ^ ) • • • p~n(a^)1i! with coefficients Cjlt...jn and 1 < j \ < 
• • • < jn < s, as in (3.4). Then, by the same argument as in lemma 5.2 we 
show that all the coefficients Cjli...:jn vanish. However, this contradicts with 
the assumption that vn is nonzero. It therefore follows that vn has such an 
element that maps it to Vt. We thus obtain the theorem. • 

5.2. The case of degenerate evaluation parameters 

Let us discuss a general criteria for a finite-dimensional highest weight 
representation to be irreducible. 

Theorem 5.2. Recall that VB is a finite-dimensional representation of the 
Borel subalgebra U(B) generated by a highest weight vector '3/ that has eval
uation parameters aj with multiplicities rrij for j = 1,2, ...,s. Suppose 
that x~[ is nilpotent of degree r and the evaluation parameters are nonzero, 
i.e. a\a2---a3 ^ 0. We also recall that a denotes the set of evaluation 
parameters: a = {a\,a2, • • • ,as}. Then, VB is irreducible if and only if 
x;+1(aW)*=0. 

We prove it by generalizing the proof of theorem 5.1 (cf. Ref. 6 ) . 
Theorem 5.2 plays an important role when we discuss the spectral de

generacy of the twisted XXZ spin chain at roots of unity associated with 
the Borel subalgebra U{B) of the sfa loop algebra. Here the spin chain 
satisfies the twisted boundary conditions. We show in some sectors that a 
regular Bethe ansatz eigenvector \R; $) is a highest weight vector of the 
Borel subalgebra U(B) for some twist angle $ 5 '8. It is nontrivial whether 
the highest weight representation VB generated by \R; 3>) is irreducible or 
not. Suppose that x± is nilpotent of degree r in Vg> \R',$) n a s nonzero 
evaluation parameters aj with multiplicities rrij for j = 1,2,... , s , where 
mi + • • • + ms = r, and we have the following relation: 

x;+1(a^)\R;$)=0, (3.6) 

where a denotes the set of evaluation parameters a\,a?,,... ,as. Then, it 
follows from theorem 5.2 that VB is irreducible, and the degenerate multi
plicity of \R; $} is given by (mi + l)(m,2 + ! ) • • • (ms + 1). 
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On the Physical Significance of q-deformation in Many-body 
Physics 
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A quantum extension of an algebraic sp(4) model is applied to a study of 
pairing correlations in nuclei with mass 40 < A < 100. While a reasonable 
overall description of certain nuclear properties is achieved in the nondeformed 
limit of the theory, the (/-deformation brings forward superior results and plays 
a significant role in understanding nonlinear effects in many-body physics. 

1. Introduction 

The concept of quantum (or q-) deformation, formulated by Drinfeld and 
Jimbo1 - 3 , arose in physics. Originally, the ^-analog of SU(2) appeared in 
the application of the quantum inverse scattering method to 2-dimensional 
models in quantum field theory and statistical mechanics4. Thereafter, es
pecially following the introduction of the g-deformed harmonic oscillator5,6, 
considerable attention has been focused on studies based on the novel and 
promising approach of quantum deformation in various fields of physics3'7. 
In recent years, in addition to purely mathematical examinations of quan
tum algebraic concepts (see e.g.8), and particularly of quantum symplectic 
algebras9-12, studies of interest include applications in string/brane theory, 
conformal field theory, statistical/quantum mechanics, and metal clusters13, 
as well as in nuclear physics14'15. 

The earliest applications of the quantum algebraic concept to nuclear 
structure were related to an SUg(2) description of rotational bands in axi-
ally deformed nuclei16. In the realm of the pairing correlations models the 
quantum deformation concept was introduced first for like-particle pairing17 

based on an sug(2) approach, which was later extended to soq(5) to include 
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pn pairing correlations18. Even though optimum values of the (/-parameter 
have achieved an overall improved fit to the experimental energies, the ques
tion on the physical nature of ^-deformation when applied to the nuclear 
many-body problem remains open. 

Pairing, introduced in physics for describing superconductivity, is fun
damental to condensed matter, nuclear, and astrophysical phenomena of 
recent interest. In nuclear physics, the "quasi-spin" symplectic Sp(4) group 
[with a Lie algebra isomorphic to so(5)19~21] together with its dual Sp(2fi), 
for 2f2 shell degeneracy, use the seniority quantum number22 '23 to classify 
the nuclear energy spectra. A two-body microscopic model with Sp(4) dy
namical symmetry allows one to focus on like-particle (pp and nn) and 
proton-neutron pn isovector (isospin T = 1) pairing correlations and, in 
addition, to include a pn isoscalar (T = 0) interaction. While nuclear prop
erties are generally well-described within this framework24'25, nonlinear lo
cal deviations due to many-body interactions can be modelled26 by a q-
deformed extension of sp(4). In general, many-body interactions are rather 
complicated to handle, nevertheless, they introduce an overall improvement 
of the theory27. An important property of the g-deformed model is that it 
does not violate physical laws fundamental to a quantum mechanical nu
clear system and conserves the angular momentum, the total number of 
particles, and the isospin projection. 

2. Nonlinear pairing model 

Mathematically, a deformation parameter (q) is used to realize a mapping 

of c-numbers (or operators) X into their (/-equivalents: [X]p = ^ PZ.\-v 
9—> X (denoted [X] when p = 1) and hence [X]p is nonlinear in X. A 
feature of any quantum algebra is that in the q —> 1 (x —> 0, q = eK) limit, 
one recovers the nondeformed results. 

The sp (4) deformed algebra11,28'29 is realized in terms of (/-deformed 
fermion operators, a'u_r may and av, each of which creates and annihilates 
a nucleon with isospin a ( ± | for proton/neutron) in a single-particle state 
of total angular momentum j (half-integer) with third projection m. The 
g-operators are defined through their anticommutation relations29, 

{ajm<T,alm,a}q±i = q±^6jJ>5m,m', {ajma,a],m,a,} = 0,a^ a', . ^ 

{ajmv>aj>m'v'} = °> {ajm*,aj'm><,>} = 0, 

where the g-anticommutator is {A, B}qV = AB+qpBA and 2f2 = J2j (2J+1) 
is the space dimension for given a. The Ar2a=±i proton/neutron number op-
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erators in (2.1) belong to the spq(4) basis operators set, yet they remain 
undeformed (N2a = J2j,m

c]m<TCJma, where c\}' are nondeformed fermion 
operators). Hence, the quantum approach retains the physical meaning of 
observables such as the total nucleon number operator, N = N+i + iV_i, 
and the isospin projection, To = 5CN+1 — 7V_i). In addition, number con
servation requires counting of (/-deformed particles to proceed in the same 
fashion as in the q —> 1 limit, 

[N2<T',a)m(T} = 5a^a]ma, [N2a',ajma] = -Scv'ajma- (2.2) 

The set of anticommutation relations for the (/-deformed fermion opera
tors can be chosen from among various possibilities (for example, see 11-30) ) 

each of them suitable for a certain mathematical application. However, if 
we start with the usual (/-deformed anticommutation relations for fermions, 
which is analogous to the (/-deformed commutation relations for n cre
ation (annihilation) boson system that realizes the standard Drinfeld-Jimbo 
quantum uq(n) algebra1-2, namely, ajmaa]ma + q±l a]m<raima = q±

Nj™,2°, 
with Njmt2a = cjmacjma counting the particles of type a in a (j, m)-state, 
the relation follows, a]mCTajmCT = [Njm,2fT]. Clearly, this relation turns 
out to be undeformed due to the fermion nature of the nucleons, that is 
Njm,2a = 0 or 1, and essentially leads back to a non-deformed algebra in 
contrast to our definitions (2.1). The anticommutation relations (2.1) for 
two conjugate fermion operators, ajm<T and a ] m i 7 , yield atmo.Q:/m(T — ^ 

1Q. J 

and hence V - m
ajmaajma = 2f2[-^-]. Such a relation coincides with the 

nondeformed definition of the total particle number operator in the q —> 1 
limit as or^a —> Cjma an(^ n e n c e justifies the introduction of the l/(2fi) 
factor into the novel set of anticommutations (2.1). 

The basis operators29, T± and A]^'0 _ l 5 of the spg(4) algebra are con
structed as eight bilinear products of the fermion (/-operators coupled to 
total angular momentum and parity J^ = 0 + , 

A*=°+°' = y/W+6^) Zjm(-VJ-ma)mA-m,«' = (A-k)*, (2.3) 

A~k = 0 n ( i + « „ , ) ^ ( - l ) j - m ^ , - m , ^ w < , (2-4) 

T ± = ^ Q S j m aJm,±l/2aJm,Tl/2> (2-5) 

in addition to the two Cartan operators N±i of sp(4). In the q —> 1 limit, 
To,± are associated with isospin and AJ.{ 0 ± 1 annihilate (create) a proton-
proton, proton-neutron, or neutron-neutron J = 0 pair. The latter construct 
a g-deformed basis, | n i ,n 0 ,n_ i ) = ( A i ) " 1 ^ ) " " ^ ^ ) " - 1 |0), specified by 
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the ni proton-proton pair number, no proton-neutron pair number, and 
n_i neutron-neutron pair number. 

While an explicit form for the second-order Casimir operator of spg(4) 
for other ^-deformed schemes can be given10, this is not a simple task for 
the case of the deformation (2.1) suitable for nuclear physics applications 
because it includes, by construction, a dependence on the shell structure. 
Nevertheless, we are able to find a (/-deformed second-order operator31, 
02(spg(4)), that is diagonal in the ^-deformed basis and that in the q —» 1 
limit reverts to the second-order sp(4) Casimir invariant. It can be ex
pressed through the C<i Casimir invariants of the su*(2) subalgebras of 
spg(4) with k = ±1,0, T denoting like-particle, proton-neutron and isospin 
symmetries29, 

N+1-n 
2 + 

N-i-n 

w h e r e p •• 
[2] + [2] 

" (2-6) 
251. The P's in (2.6) are ^-functions of the pair numbers, 

A '0 = 

2n0 + n 1 - t i - l x Mno + n ^ - f i + i + 2„0 + n i _ n + l 2nQ + n_ i_n_I 

-n-J A 5n 

(2.7) felS/31=f^LT1)*(?-2)^12, /%. = !, 
[2] 2^fc=l ^ W 

where we define 

*(«o) = £ | r [2«o-fe] A - 1 2(no + 1), P± = ̂ ^ 9 - I- (2.8) 
fc=0 

The eigenvalue of 02{spq{A)) (2.6) in the ^-deformed basis is 

(o2(sPg(4))) = (3Mh) [*?*]* t ^ + i ] * 
2re++no—Q 

2 + 
2n-+np —Q 

2 } 

$ ( T t o - l ) ( ^ ( n o - l , n i ) + ^ ( K o - l , n - i ) ) + $ ( n 0 ) ( ' i ' ( n o , n i - l ) + ^ ( n o , n - i - l ) ) 

2n -2 (7 i !+n- i ) 
2 

2n 
•«-^+"-')+l]j_ + [^][n1-n-4 

+ 4[2]n 
(2.9) 

« - i with * (n 0 , n± i ) = 2 ^ / ^ 0 3 ^ + 1] i [ 2 n o + n ± + 1 / 2_n] i ^ 4(n ± 1 + 1) 
2?7 
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The second-order operator (2.6) is a Casimir invariant only in the non-
deformed limit of the theory. Nevertheless, its importance in the ^-deformed 
case is obvious. It is an operator that consists of number preserving products 
of all ten q-deformed generators, and the q-deformed pair basis states are 
its eigenvectors. Its zeroth-order approximation commutes with the gener
ators of the q-deformed symplectic symmetry. It also gives a direct relation 
between the expectation values of the second-order products of the opera
tors that build 02(spg(4)). Hence the result can be used to provide for an 
exact solution of a g-deformed model Hamiltonian. 

As for the microscopic nondeformed approach, the most general 
Hamiltonian24 with q-deformed symplectic dynamical symmetry (spg(4) D 
su (2)) that conserves proton and neutron particle numbers is 

Hq = -eqN - Gq E L - i A\A-k - FqA\>M - f* (T2 - fi [&]) 

" DqSl [&] [To}% - Cg2fi [1] [ f ] ^ [ f - 2 f i ] ^ , (2.10) 

where T 2 = ft({T+,T_} + [A] po]2^). In principle, the deformation pa-
rameters yq = {eq,Gq, Fq, Eq, Dq,Cq} can differ from their nondeformed 
counterparts 7 = {e, G, F, E, D, C}, which we assume to be constant within 
a major shell. The model describes the behavior of 7V+i valence protons and 
A?_i valence neutrons in the mean-field of a doubly-magic nuclear core. 

The nondeformed Hamiltonian H, Hq —* H, is an effective two-body 
interaction that includes isovector pairing (parameter G) and a so-called 
symmetry term (E), which together with the iV2-term arise naturally from 
a general two-body rotational and isospin invariant microscopic interaction. 
Both the C- and .E-terms account for an isoscalar pn interaction that is di
agonal in an isospin basis. These interactions govern the lowest 0 + isobaric 
analog states of light and medium mass even-A nuclei (40 < A < 100) with 
protons and neutrons occupying the same major shell, where the seniority 
zero limit is approximately valid24'25'32. For these states, the nondeformed 
model has already proven to provide a reasonable overall description for a 
total of 136 nuclei24. This includes a remarkable reproduction of the energy 
of the states and their detailed structure reflecting observed N+\ = JV_i 
irregularities and staggering patterns25. As a consequence, any deviation 
within a nucleus from the reference global behavior can be attributed to 
local effects which although typically small can be important for deter
mining the detailed structure of individual nuclei27. As a group theoretical 
approach, the quantum extension of H includes many-body interactions 
in a very prescribed way, retaining the simplicity of the exact solution. 
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Moreover, the quantum model not only has the spq(4) D suq(2) dynamical 
symmetry, it contains the original dynamical Sp(4) symmetry. 

3. q-Deformation and many-body interactions 

From an undeformed perspective, the deformation introduces higher-order, 
many-body terms into a theory that starts with only one-body and 
two-body interactions. The way in which the higher-order effects en
ter into the theory is governed by the [X] form. In terms of x, every
thing is tied to the deformation with [X] = " ? ^ g ) =X(1 + x2^^ + 

x 4 3 X ~3
1
6°0"

y "l~7 + ...) *—» X. An illustrative example is the expansion in x 
of the last term in Hq (2.10), -Cq2Q [£] [ f ]_i_[f - 2 0 ] ^ = -2Cqf ( f -

20) - Cqx
2{(16tf-24n+5)(V<-V+vM)+6V™+(6-ZnW(3) + V(i)} _ __̂  w j t h y(l) = 

and V^ = £ „ „ „ „ 
v\ "2 "3 vi Cvi c"3 c,/2 c,/i • ^ ^ e zeroth-order approxi

mation corresponds to the nondeformed two-body force and coincides with 
it for a strength Cq equal to C, and the higher-order terms introduce many-
body interactions. The latter may not be negligible, for example, we find 
that the contribution of the four-body interaction in the expansion above 
can reach a magnitude of several MeV in nuclei in the lf5/2^Pi/2^P3/2^99/2-

Similarly, the zeroth-order term of Hq (2.10) coincides with the H non-
deformed interaction only if the strength parameters are equal, 7, = 7. This 
term must remain unchanged when deformation is introduced, since H has 
been shown to reproduce reasonably well the overall behavior common for 
all the nuclei in a shell. This is why we fix the values of the parameters 
-fq = 7 and allow only K to vary. The decoupling of the deformation from 
the 7 parameters that are used to characterize the two-body interaction 
itself, means that the latter can be assigned best-fit global values for the 
model space under consideration without compromising overall quality of 
the theory. This in turn underscores the fact that the deformation repre
sents something fundamentally different, a feature that cannot be "mocked 
up" by allowing the strengths of the nondeformed interaction to absorb 
its effect. In short, the (/-deformation adds to the theory, which describes 
quite well the overall nuclear behavior, a mean-field correction along with 
two-, three-, and many-body interactions of a local character that can be 
responsible for residual single-particle and many-body effects. 

The possible presence of local effects built over the global properties of 
the 0 + states under consideration can be recognized within an individual 
nucleus by the deviation of the predicted nondeformed energy (H) from 
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<"„>-£exp<MeV) 

Fig. 3.1. Theoretical and experimental energy difference vs. the x parameter for a 
typical near-closed shell nucleus (solid line) and for a mid-shell nucleus (dashed line). 

the experimental value Eexp, namely, the solution of the equation (Hq) = 
Eexp provides a rough estimate for x (see Fig. 3.1). However, in nuclei 
where (H) > Eeiip there is no solution (see Fig. 3.1) and the theoretical 
prediction closest to experiment occurs at the nondeformed point, x = 
0. The observed smooth behavior of discrete solutions for x (Fig. 3.2(a)) 
reveals its functional dependence on the model quantum numbers. This 
result, even though qualitative, underscores the fact that the q-deformation 
as prescribed by the spg(4) model is not random in character but rather 
fundamentally related to the very nature of the nuclear interaction. 

This, in turn, allows us to assign a parametrized functional dependence 
of the deformation parameter on the total particle number N and the isospin 
projection To, 

x(iV, T0) = £ i ( & - 1)(& + ^ - 26(N - 2 f i ) )e - ° - 5 ( ^ ) 2 

which reflects the complicated development of nonlinear effects observed 
in Figure 3.2(a). As a next step, we use the X{N,TQ) deformation function 
(3.1) to fit the minimum eigenvalues of Hq (2.10) to the relevant experimen
tal energies of the even-even nuclei in the I/7/2 and lf5/2^Pi/2^P3/2^-99/2 
shells. In doing this, we minimize any renormalization of the (/-deformed pa
rameter due to a possible influence of other local effects that are not present 
in the model. In the fitting procedure, only the four parameters (£1,2 ,3 ,4) 
of x(JV, To) in (3.1) are varied. Determined statistically, they provide an 
estimate for the overall significance of (/-deformation within a shell. 

The q ^ 1 results are uniformly superior to those of the nondeformed 
limit. In the l/5/22pi/22p3/2lfi»9/2 shell, for example, the (/-deformed model, 
SOSq = 130.21 MeV2 (xq = 1.28 MeV)*, clearly improves the nondeformed 

* SOS is defined as the sum of the squared differences in the theoretical and experimental 
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x * 
1.0 

«-l 
(a) (b) 

Fig. 3.2. >c-Parameter estimation: (a) within each nucleus, and (b) >c(N, To) within the 
l /5 /22pi / 22p 3 / 2 lS9/2 shell (global parameters: s = 13.851, G/Cl = 0.296, F/Cl = 0.056, 
E/(2n) = -0.489, D = -0.307, and C = 0.190 in MeV). 

theory, SOS = 271.63 MeV2 (x = 1.79 MeV). The optimum results are 
achieved for ft = -2.13, ft = 0.37, ft = 3.07, ft = 0.15. The behav
ior of the q deformation (as prescribed by (3.1)) is consistent in both of 
the regions considered (shells I/7/2 and lf5/2^Pi/2^P3/2^99/2)- As a whole, 
the model with the local q improves the energy prediction compared to 
the nondeformed global model and reproduces more closely the experiment 
numbers (see Fig. 3.3). One reason may be that the g-deformed fermions, 
unlike usual quasiparticles, indeed obey the fundamental laws. 

The many-body nature of the interaction is most important away from 
mid-shell and for many even-even nuclei tends to peak [with significant 
values of q] when N+i = 7V_i where strong pairing correlations are expected 
(see Fig. 3.2). Values of the deformation parameter q w 1 may be found 
in nuclei with only one or two particle/hole pairs from a closed shell. For 
these nuclei the number of particles is insufficient to sample the effect of 
higher-order terms in a deformed interaction and the nondeformed limit 
gives a good description. Around mid-shell (N « 20) the deformation adds 
little improvement to the x = 0 theory. This suggests that for these nuclei 
the many-body interactions as prescribed by x(N, To) in (3.1) are negligible 
and the model is not sufficient to describe other types of local effects that 
may be present. The results imply that even though the ^-parameter gives 
additional freedom for all the nuclei, it only improves the model around 
regions of dominant pairing correlations. In short, the pair formation favors 
the nonnegligible higher-order interactions between the pair constituents 

energies, and x 2 ' s the averaged SOS per a degree of freedom in the statistics. 
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Fig. 3.3. The g-deformed and nondeformed energies compared to experimental values 
for even-even isotopes in the I/7/2 shell (global parameters: e = 13.149, G/Q = 0.453, 
F/U = 0.072, E/{2Q) = -1.120, D = 0.149, and C = 0.473 in MeV). 

t ha t are detected via the spg(4) model. 

In summary, a (/-deformed nonlinear extension of the Sp(4) model, which 

is the underlying symmetry for describing isovector pairing correlations and 

pn isoscalar interactions in atomic nuclei, was constructed. When compared 

to experimental data, the theory shows a smooth functional dependence 

of the deformation parameter q on the proton and neutron numbers. In 

addition, 5-deformation yields results uniformly superior to those of the 

nondeformed limit and detects the local presence and importance of many-

body interactions accompanying dominant pairing correlations in nuclei. 

The outcome suggests tha t g-deformation has physical significance extend

ing to the very nature of the nuclear interaction itself and beyond what can 

be achieved by simply tweaking the parameters of a two-body interaction. 

The role of (/-deformation is not model limited, it can extend to include a 

description of various many-body effects. 

This work was supported by the US National Science Foundation, Grant 

Number 0140300. 
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A Matrix Product Ansatz Solution of an Exactly Solvable 
Interacting Vertex Model* 

A. A. Ferreira and F. C. Alcaraz 

Universidade de Sao Paulo, 
Instituto de Fisica de Sao Carlos, CP 369, 13560-970, Sao Carlos, SP, Brazil 

A special family of solvable five-vertex model is introduced on a square lattice. 
Beyond the usual nearest neighbor interactions, the vertices defining the model 
also interact along one of the diagonals of the lattice. This family of models 
includes on a special limit the standard six-vertex model *'2. The exact solu
tion of these models gives the first application of the matrix product ansatz 
introduced recently and applied successfully in the solution of quantum chains. 

1. Introduction 

We are going to introduce and solve a special family of five-vertex models 
where besides the usual nearest-neighbour interactions, imposed by their 
connectivity, there exist additional interactions among more distant ver
tices. We are going to show that this family of models is exactly integrable 
and contains as a special case the standard six-vertex model. The solu
tion of these models will be obtained by the exact diagonalization of the 
diagonal-to-diagonal transfer matrix. The exact solution of transfer matri
ces associated to vertex models or quantum hamiltonians are usually ob
tained through the Bethe ansatz 3 on its several formulations. This ansatz 
asserts that the amplitudes of the eigenfunctions of these operators are given 
by a sum of appropriate plane waves. Instead of using the Bethe ansatz, 
the solution we are going to derived will be obtained through a matrix 
product ansatz introduced recently 4. In this ansatz, the amplitudes of the 
eigenfunctions are given in terms of a matrix product of matrices obeying 
special algebraic relations. The present paper presents the first application 
of the matrix product ansatz for the exact solution of a transfer matrix. 

*This work was supported in part by FAPESP and CNPq (Brazilian Agencies) 
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2. The interacting five-vertex model 

The family of vertex models we are going to introduce and solve are defined 
on a square lattice with M horizontal lines and L vertical rows (see Fig. la). 

, . .T(M,L) 

• • • " • 
• • • 

— < 

• 
• 

• 
• 

h.i) 

• 
• 

• 

(i 

Fig. 1. (a) Square lattice with M horizontal lines and L vertical rows. The extra in
teractions are along the dashed diagonals. (b)The distorted diagonal lattice where the 
extra interactions are along the horizontal. 

As in the six-vertex model we impose that the allowed arrow configura
tions only contain vertices satisfying the ice rules, namely, the fugacity of 
a given vertex is infinite unless among its four arrows two of of them point 
inward and two of them point outward of its center. According to this ice 
rule we have the allowed 6 vertex configurations shown in Fig. 2, with their 
respective fugacities c\,c-x,bi,hi,do,o.\. 

1 2 3 4 5 6 

i. » f 

1 1 

c, c2 bn b2 a 0 a 1 

Fig. 2. Vertex configurations with respective fugacities for the six-vertex model. 

The partition function is given by the sum of all possible vertex config
urations with the Boltzmann weights given by the product of the fugacities 
of the vertices. 

.ir 

d.L) 

1) 

M 

(1.3) • 

""(1.L) 
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The family of models we are going to consider are interacting five-vertex 
models where besides having interactions (infinite or zero) imposed by the 
lattice connectivity also contains interactions among pairs of vertices at 
larger distances. The allowed vertex configurations, with their respective 
configurations are the first five configurations shown in Fig. 2. Distinctly 
from the six-vertex model the vertex configurations with fugacity a\ is 
forbidden (zero fugacity). 

These interacting five-vertex models are labeled by a fixed positive in
teger t that may take the values t = 1,2,3, . . . . This parameter specify the 
additional interactions among the vertices. These interactions occur along 
the diagonals of the square lattice that go from the top left to the bot
tom right direction (see the dashes diagonals in Fig. la). A pair of vertices 
at distance D = 1^/2 (I = 1,2,...), in units of lattice spacing, along this 
diagonal interacts as follows 

a) the interaction energy is zero if I > t 
b) if one of the vertices is ao the interaction energy is zero for all values of 
I 
c) if neither of the vertices is ao the interaction energy is infinite if I < t, 
except on the special case where I = t and C2 is on the left of c\. In this 
case the interaction energy e/ is finite and produces a Boltzmann weight c/ 
given by* 

C l C 2 

3. The diagonal-to-diagonal transfer matrix 

Following Bariev s in order to construct the diagonal-to-diagonal transfer 
matrix for the interacting five-vertex models it is convenient to distort the 
square lattice shown in Fig. la as in Fig. lb. In this case the vertices which 
are at closest distances along the dashed diagonals of Fig. la are now at the 
the closest distance along the horizontal direction. We are going to solve 
the model with toroidal boundary conditions on the distorted lattice of 
Fig. lb. 

The vertices configurations on the distorted lattice are show in Fig. 3. 
We also present in this figure a convenient representation of the vertices 
where we only draw the arrows pointing to the botton. 

tThis notation is chosen in order to compare these interacting five-vertex models with 
the standard six-vertex model 

(2.1) 
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b, a0 

Fig. 3. Vertices configurations on the distorted lattice. A representation where only the 
arrows pointing to the bottom are drawn on the second line. 

Using the vertex representation of the second line of Fig. 3, it is interest
ing to observe that in the distorted lattice the allowed arrow configurations 
on the horizontal lines beside having a fixed number of arrows can be inter
preted as if the arrows would have an effective size s = 2t + 1 s — 3,5,..., 
in lattice spacing units of the distorted lattice. An arrow on a given link 
has a hard-core interaction that exclude the occupation of other arrows at 
the link itself as well as the 2i-nearest links on its right. 

The interpretation where the arrow have an effective size allows us a 
simple extension of our model to case where t = 0. In this case the arrows 
have a unit size and the extra hard-core interaction among the vertices with 
fugacities C2 and c\ occurs when the arrows are at the same site, giving an 
extra vertex configuration with total contribution C\C2-^- = a\ and the 
model reduces to the well known six-vertex model, with fugacites given in 
Fig. 2. 

4. The matrix product ansatz and the diagonalization of 
the transfer matrix TD-D 

As a consequence of the arrow conservation and the translation invariance of 
the arrow configurations on the horizontal lines of Fig. lb the matrix TD-D 
split into block disjoint sectors labeled by the number n (n = 0 , 1 , . . . , 2L) 
of arrows and momentum p = 2j£j (j = 0 , 1 . . . , L — 1). We want to solve, 
in each of these sectors, the eigenvalue equation 

An,p|*„,p > = TD-D\^n,p >, (4.1) 
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where A„iP and |\J/„,P > are the eigenvalues and eigenvectors of TD-D, 
respectively. These eigenvectors in general can be written as 

(*) 
l*n>P > = E L ^ i < . » ( 1 i r - , i J | i i , a i ; . . . ; i n , a „ >, (4.2) 

{x} {a} 

where (f>au...tCtn{xi,... ,xn) is the amplitude corresponding to the ar
row configuration where n arrows of type ( a i , . . . , a „ ) are located at 
(xi,... ,xn), respectively. The symbol (*) in (4.2) means that the sums 
of {x} and {a} are restricted to the sets obeying the hard-core exclusions, 
for agiven interacting parameter t: 

Xi+l > Xi + 2t + 1 - 6ai,l6ai+lt2, 

2t + l - <5Ql,i<W,2 < xn - xi < L - It - 1 + 5antlSau2- (4.3) 

Since \$n,p > is also an eigenvalue with momentum p the amplitudes also 
satisfy 

Oil, \X\, • . . , Xn) 
= e- imP, m = 0 , l , . . . , L - l . (4.4) 

(pat,...,an{xi +m,...,xn+m) 

The exact solution of (4.1) is obtained by an appropriate ansatz for the 
unknown amplitude (j>^1 ...,an(x\, • • • ,xn). As shown in last section in the 
case where t = 0 (s = 1) our model reduces to the standard six-vertex model 
and on this case an appropriate coordinate Bethe ansatz is known 6 that 
solve the eingenvalue equation (4.1). In this CctSG, clS usual, the amplitudes 
{'Pa! an(

xi' • • • ixnY\ a r e given by a combination of plane waves whose 
wavenumbers are fixed by the eigenvalue equation (4.1). 

In this paper we are going to solve (4.1) for general values of t (t = 
0,1,2,. . .) or s = 2i + 1 (s = 1,3,5,...) by using a distinct ansatz. The 
matrix product ansatz we are going to use was introduced in 4 for quantum 
integrable chains. We present in this paper the first application of this 
matrix product ansatz for transfer matrices. According to this ansatz the 
amplitudes </>g1 a (xi,..., xn) are obtained in terms of a matrix product 
of matrices satisfying an unknown associative algebra. The model is exact 
integrable if the eigenvalue equations fix consistently the algebraic relations 
among the matrices. 

In order to formulate the matrix product ansatz we make a one-to-one 
correspondence between configurations of arrows and products of matrices. 
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The matrix product associated to a given arrow configuration is obtained by 
associating to the sites with no arrow a matrix E, to the sites with a single 
arrow of type a (a = 1,2) a matrix Aa, and finally to the sites with two 
arrows* we associate the matrix A^E~lA^. The matrix product ansatz 
imposes that the unknown amplitudes in (4.2) are given by the traces 

C . . . , a > i - ••-,*»») = Tr[EI1-M(Ql)£7Ia-!El-1^aa) • • • 
Exn-xn-l-i A(an) EL-X™np}. (4.5) 

The matrix ttp is introduced in order to fix the momentum p of the eingen-
state \^n,p >• 

The constraints imposed by the eigenvalue equation (4.1) on the sector 
with a fixed number n of arrows and momentum p are solved by identifying 
the matrices A^ of the ansatz (4.5) as composed by n spectral dependent 
matrices Aki (i = 1 , . . . , n), 

n 
Aa=Y/4>icAkiE

1~2t, a = 1,2, (4.6) 
i 

satisfying the algebraic relation 

EAki = eikiAkiE, AkQp = e'iptnpAk, 

AkiAk. =s(kj:ki)AkjAki, A2
k.=0, i = l,...,n, (4.7) 

where s(ki,kj) is given by (4.8). 

SyKj, /CjJ = 

Ai(ki)A1(kj)b1 - Ai(kj)(b2bi - c2ci + a t ) + ai&2 (.&, 
Ai(ki)Ai(kj)bi - Ai(ki)(b2bi - c2ci + ai) + aifo' 

and 

A1(fc) = A(/)(/e) = 

i (6 2 + heik + l[(b2 + bxe
ikf - ±eik{b2bx - c2Cl)]i), (4.9) 

with / = ±1 . Since we can always factorize one of the fugacities on the 
partition function we have chosen in the previous expressions ao = 1. 

'This last case only is allowed in the case of the six-vertex model where t — 0 and s = 1. 
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The eigenvalues of the transfer matrices and momenta are given by 
n n 

A„(fci,...,fc„) = JjAi(Aii), p = Y^h- (4.10) 
i=n i=l 

The spectral parameters {&,} are fixed by the cyclic property of the trace 
of the matrix products appearing on the ansatz, and are given by the the 
solution of the nonlinear set of equations 

e ' ^ - n ^ - . f c o f S r ) ' 3 = l,-..,n, (4.11) 

with s(kj,ki) given by (4.8). This last equation reproduces for t = 0 the 
spectral parameter equations for the six-vertex model obtained in 6 by using 
the coordinate Bethe ansatz. 

Since p = Y^l=i fy we can rewrite the spectral parameter equation (4.11) 
on the sector with a number n (n = 1,2,...) of arrows and momentum 
P = ^ ( j = 0 , l , . . . , . L - l ) a s 

n 

eifci(L-2tn)e-2ipt = -Y[s(kj,kl), (4.12) 
1=1 

which implies that the eigenvalues belonging to the sector labeled by 
(n,p) of TD-D of the interacting five-vertex model with a parameter t 
(t = 0,1, 2,.. .) is related to those of the standard six-vertex model (t = 0) 
on a lattice size L = L — 2nt and with a seam§ along the vertical direction 
of Fig. lb, that depends on the momentum p. The same phenomena also 
happens on quantum hamiltonians with hard-exclusion effects 8 . 

5. Roots of the spectral parameter equations 

In order to complete the solution of any integrable model we need to find 
the roots of the associated spectral parameter equations (Eq.(4.11) in our 
case). The solution of those equations is in general a quite difficult problem 
for finite L. However numerical analysis on small lattices allow us to conjec
ture for each problem the particular distribution of roots that corresponds 
to the most important eigenvalues in the bulk limit (L —» oo). Those are 

§The phase e~,2pt in (4.12) could be obtained by considering a six-vertex model on the 
geometry of Fig. lb , but with a seam with distinct vertex fugacities along the vertical 
direction. 
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the eigenvalues with the higher absolute values in the case of transfer ma
trix calculations. The equations we obtained in the last section were never 
analyzed previously either for finite or infinite values of L. Even on the 
simplest case t = 0, where the model reduces to the six-vertex model, the 
spectral parameter equations obtained in 6 throught the Bethe ansatz were 
not analyzed. 

In our general solution of last section we have, for arbitrary values of the 
interacting range t (t = 0,1,2,...), five free parameters: (a\,b\,62,c\,C2). 
The particular case where we have no interactions along the diagonals {a\ — 
0) is special and is not going to be considered here (see 7 for a discussion 
of the parametrization on this case). 

In order to simplify our analysis we are going hereafter to restrict our
selves to a symmetric version of our model with only three free parameters 
(S, b, c), namely, 

do = 1, 01 = 52, b\=b<i = b5, ci = C2 = cS. (5.1) 

The parameter 5 give us, in the case where t = 0, the contribution to the 
fugacity due to an electric field on the symmetric six-vertex model, and 
for general values of t, /i = —InS plays the role of a chemical potential 
controlling the number of arrows in the thermodynamic limit. 

Instead of writing the spectral parameters equations in terms of the 
spectral parameters (k\,..., kn) as in (4.12) it is more convenient to write 
these equations in terms of the variables A., = • 1\ '', with Ai(fcj) given by 
(4.9). In this case the eigenvalues of TD-D are given by 

A n = SnX1---Xn, (5.2) 

where {Xj} satisfy 

*j(b-\j) \ L - 2 t n
 2ipt 

where we have introduced the anisotropy parameter 

A b2-c2 + l 
A=—2b— ^ 
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We see from (5.2)-(5.4) that we have now only two free parameters: b 
and c. The interacting parameter S that gives the contribution due to the 
interaction among the vertices along the diagonal, does not appear on the 
equations (5.3) and (5.4), it only gives an overall scale for the eigenvalues 
as shown in (5.2). Inspired on the usual parametrization of the six-vertex 
model 2 we express the parameters b and c in terms of the parameters a 
and 7: 

. sincr sin 7 
b = 6(7, a) = -— -, c = c (7 ,c r ) -sin(7 — a)' ' sin(7 — a)' 
A = —cos 7. (5.5) 

The fact that A is a real number imply that 7 is real for —1 < A < 1 
and pure imaginary for |A| > 1. Since the right-hand side of (5.3) is the 
same for all values of the parameter t it is interesting, as in the six-vertex 
model 2, to make the change of variables Xj —> <jj, where, 

s i n h ( t 7 - ^ . = 1 > . . . > n . ( 5 . 6 ) 

s m h <7j 

In terms of these new variables {<Tj} the spectral parameter equations (5.3) 
becomes 

sinh(i7 - CTJ) sinh(z7 - ia - CTJ)\ L~2tn
 &_2ipt = 

sinh(<7j) sinh(i7 + <Tj) J 

-f[Shih^-a,+h\, ; = !,.•,n. (5.7) 
^ smh(o-j - a/ - 17) 

These equations are quite distinct from the corresponding spectral pa
rameter equations derived for the row-to-row transfer matrix of the six-
vertex model. Since no numerical analysis of the roots for this type of 
equations is reported on the literature we made an extensive numerical 
study of these equations for finite values of L and several values of the 
anisotropy A. In the particular case where A = 0 (7 = ^) these equations 
can be solved analytically. Solutions of these equations are obtained by the 
Newton method by using the distribution of roots {<7i} at A = 0 as the 
starting point to obtain the corresponding roots at other values of A ^ 0. 
Our numerical analysis shows that the eigenspectrum of TB-D are formed 
by real or complex-conjugated pairs of roots ensuring that the partition 
function is a real number. We verified that the eigenvalue with highest 
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modulus belonging to the sector with n arrows is real and corresponds to 
a zero momentum eigenstate (p = 0). The distribution of roots {a} corre
sponding to these eigenvalues have a fixed imaginary part, that depends on 
a and 7, and a symmetrically distributed real part, i. e., 

"7 — O 
Iva(aj) = —-—, Real(<7j) = Real(cr„_j), 

j = l,...,n. (5.8) 

We have also verified for all sectors the occurrence of several other real 
eigenvalues. In these cases the corresponding roots {<Tj} have imaginary 
parts given either by :L^- or :i^- — ^. 

Due to space limitations we do present here the free energy calcula
tions in the thermodynamic limit and the phase diagram of the models. 
These calculations are going to be presented on an extended version of these 
notes 9. 
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The set of partial differential equations for the Appell hypergeometric function 
in two variables FA (a, j3,7, a+/3—7+2—h\ x,y) is shown to arise as a null vector 
decoupling relation in a higher dimensional generalisation of the Coulomb gas 
model. It corresponds to a level two singular vector of an intrinsic Virasoro 
algebra. 

Dedicated to the memory of Mitko Stoyanov 

1. Introduction 

The hypergeometric function is an ubiquitous object of the two-dimensional 
conformal field theories, providing examples of 4-point correlation functions 
of various models. The reason behind this is that it is the simplest example 
of a solution of null vector decoupling equations associated with singular 
vectors in Virasoro algebra Verma modules. Thus the second order hyperge
ometric equation appears as a differential operator realisation of a singular 
vector at level two 1. 

Our aim in this paper is to demonstrate that a hidden Virasoro algebra 
plays a similar role in a higher dimensional conformal model. In particular 
the singular vector at level two gives rise in even 2h-dimensional space-time 
to a pair of second order linear partial differential equations. These are the 
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Appell - Kampe de Feriet (AK) equations, 2 ,a 

/x(1_x)jP__ 2&__2x _&_ JL 
V 9a;2 dy2 dxdy dx 

-(a + 0 + l)(x-^+y-^)-a(3)F = O (1.1a) 

d2
 2 d2

 0 d2 ,d 
( y ( i - y ) ^ - x 2 ^ - ^ y ^ - + 7 dy2 dx2 dxdy dy 

d d + p + l)(x—+y—)-ap)F = 0 (l.lb) 
dx dy 

satisfied by the Appell hypergeometric functions of type (here (a)n = T(a+ 
n) / r (o) ) 

*<*A^»> = J L § M ? % S ^ - (L2) 

with a + / S - 7 - 7 ' = h-2. (1.3) 

The two variables a; = ri37"24 , u = r'8'"34 ; r\,- := a;2,- are the two an-
fl4r23 ' a T14T23 ' J %3 

harmonic ratios, made of the coordinates Xi £ W-2h> of a 4-point confor-
mal invariant*. The model is a 2h-dimensional generalisation of the two-
dimensional Coulomb gas model with a charge at infinity 5, described by a 
(sub)-canonical field with logarithmic propagator, 

MxiWx*)) ~ ((-• f)-1 = -{Ai;)lv{h) loĝ f2 , (1.4) 

and scalar fields realised by vertex operators Va (x) = e10"^^; it was studied 
in 6. In the two-dimensional case the system of equations (1.1) reduces, 
after proper change of variables, to a linear combination of two (chiral) 
hypergeometric equations. 

The appearance of a Virasoro algebra in a four-dimensional context 
was pointed out many years ago by Dimitar (Mitko) Stoyanov 7, who was 
studying the infinite dimensional Lie algebras preserving the solutions of 
the Laplace equation; one of the two algebras he had constructed, contains 
a subalgebra isomorphic to the Virasoro algebra; see 8 for a more recent de
velopment. Stoyanov was also among the first, who advocated the relevance 

*With a different interpretation of the parameters the Appell function F& appears in a 
conformal context 4 as describing the conformal partial waves. 
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of the logarithmic field <f> (1.4) in various models in two and four dimen
sions, see e.g. 9 , where this field is used in the study of the four-dimensional 
massless QED, leading in particular to anomalous dimensions of the spinor 
fields. 

1.1. The 4-point function 

We recall here briefly the construction in 6. Consider the 4-point function 
in dimension 2/i described by only one integration. It is written in terms of 
vertex operators (VO) as 

d2nx5 (Va+(x5)Vai(x4)Va3(x3)Va2(x2)Vai(x1)) = (1.5) 
/ • 

^ I l n T T I I ^ r ^ ^ r ^ ' r ^ r ^ F ^ y ) , 
i *• l' l<i<j<4 

Si — —2a+ cti, and the conformal invariance imposes the condition 

4 4 h 

S^5i = 2h <-> y ^ at + a+ = 2a0 (= a+ ) . (1.6) 
»=i »=i + 

The charges are parametrised by two arbitrary parameters J and t as in 
the two-dimensional case 

aJ = J\ ^=-Ja+, 2a0 = Vh(Vi - -^=), (1.7) 

and the scaling dimension is d = 2A(a) = 2a(a — 2OJO) , or, 

A(aJ) = hAj, Aj = J{J + l-t)/t = At-i-j. (1.8) 

Following 10, F(x,y) is given by the two fold Mellin integral 

f(i,S/) = j A j [ds [dtxaytT(-8)T(-t) (1.9) 
{2iriy JT 7T 

r(<54 + s +1) r{h - Ji + s + *) r(<Ji + s2-h-t) r(<Ji + <J3 - fc - s) 
with the paths of integration running parallel to the imaginary axis. Closing 
the contours to the right and taking into account the poles of the gamma 
factors produces a linear combination of four infinite sums, that can be 
identified with the four linearly independent solutions of the AK equations 
with parameters 

a = S4, 0 = h-8i, j = l + h-61-63, 7 ' = 1 + h - ft - & , (1.10) 

satisfying (1.3) as a result of the constraint (1.6). 
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2. Fock space quantisation of the 2h-dimensional 
sub-canonical field 

We choose complex Euclidean coordinates za = elTna,n G S'2'1-1 C 
R2h, T € C, z2 = J2a=iza- For real r one recovers the compactified 
Minkowski space S1 x S2 '1 - 1 . We shall mostly use the real Euclidean coor
dinates xa = e* n a with t = IT - real; both notations zQ and a;a will appear 
throughout the paper. The field <f>{z) satisfying P hcf>(z) = (J^a d

2 ) h <j>{z) = 
0 admits the mode expansion 

0(z) = 2q-ib0 \ogz2+2i Y ^ = 2q-ib0 logz2+2i V ( z 2 )^ 1 ^ ^ 

(2.1) 
with commutation relations 

z2 

[bn(z1),b-m(z2)} =n cos n012<5nm (-f )^ , [60,9] = - i . (2.2) 
z i 

Here £ = z/Vz2, cos#12 = i i • 2*2 and bn(pz) = p~nbn(z). The one-
dimensional projection of (2.2) with z» = \Jzfe,e2 = 1, i = 1,2 (so that 
cos 612 = 1) reads 

[6„(e), 6_m(e)] = n 5nm . (2.3) 

It is assumed that bn{z) |0) = 0, (0| &-n(z) = 0, n > 0. 

2.1. Relation to the free field quantisation 

For simplicity of presentation we restrict here to the four-dimensional case, 
2h = 4. The modes bn(z), n ^ 0 can be constructed as linear combinations 
of the free field modes an(z) described in n 

[a„(zi),a_m(z2)] = -2-[al„(4)> a-m(22)] = <W -3 ( " f ) ^ c£ - i ( z i ^ 2 ) , 

(2-4) 
where n > 0 and CA (cos#) = ™ne ' . The modes an(z) are homoge
neous an(pz) = /9~"_1 an(z), harmonic variables p an(z) = 0. For n > 0, 
a_„(z), a*_n(z) are polynomials, realising an irrep of SO(i) of dim n2 (i.e., 
a_„_i(z) = zMl....zMn aMl...Mn, where aMl...Mn are symmetric, traceless ten
sors), while a„(z) := -^a*_n(^). We take two independent free fields, i.e., 
two commuting copies {an} , {o^}, [a„,a^J = 0, each set satisfying (2.4) 
and define 

b-n(z) = J-(a_n_i(z) + z2 a^ n + 1 ( z ) ) , n > 0 
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bn{z) = J^(z2 an+1(z) - a^iz)), n > 0 (2.5) 

so that 

a2bn(z) = 0, bn(Pz)=p-nbn(z). 
Indeed (2.5) is the unique decomposition of the homogeneous polynomial 
of degree n, subject to this equation, into a sum of homogeneous harmonic 
polynomials. The commutation relations (2.4) then imply (2.2). The gen
eralisation to h > 2 is straightforward with the Gegenbauer polynomials 
CnJ^+i^osfl) appearing in the r.h.s. of (2.4). In the two-dimensional case 
2h = 2 the free field modes bn(z) split into a sum of chiral pieces. 

2.2. Vertex operators 

Let 

Va(z) =: e*a*(z) := (e i 2 a 9 eia4><{z)) {{z
2)a b° e

i a * > ^ ) = V~(z) V+(z) 

(2-6) 
where 4><(z) = ^f2i ^2k>0 % • The commutation relations (2.2) imply 

[bn{z1),Va(z2)]=2a{^ cosn612Va(z2), (2.7) 
zi 

V+M)VaM) = ^2i2)2aiaaV-,(z2)V+1(z1), (2.8) 

and then the operator product expansion 

Vai(zx)Va2(z2) = (z2
2)

2aia2Vai+a2(z2) + (2.9) 

It is consistent with the 2-point function 

(2a0\V2ao-a(zi) Va(z2)\0) = (z2
2)-

2A^ , A(a) = a(a - 2a0), (2.10) 

where 2ao parametrises the charge at infinity, i.e., we reproduce (1.8). The 
(normalised) bra and ket states are determined from the vertex operators 
as 

\a)=Va(0)\0)=e2ia<1\0}, (2.11a) 

(a\ = ( 0 | e - 2 i ^ = lim (x2)2A^(2aQ\ V2ao-a(x). (2.11b) 
X—+00 

Having (2.6) one computes the matrix elements (with ap+i = 2ao — 

(2a0-ap+1\Vap(zp)...Vaa(z2)\ai)= J J (z^)2^. (2.12) 
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The charge conservation condition in (2.12) implies the identities 

p + i p 

^ A ( a j ) = - J2 2ataj ^^2A(ai)-A(ap+1) = - Y^ 2a{aj. 
i = l l < i < j < p + l i = l 1<»<J<P 

(2.13) 
The integral of the VO with charge a = a+, or a = 2ao — a + , i.e., scal
ing dimension 2A(a + ) = 2h, provides the 2h-dimensional analog of the 
screening charge operator. In a 4-point matrix element with one screening 
charge we shall use the notation £5,0:5 = a+ keeping the index 4 for the 
last field in the 4-point function. Then the matrix element is related to the 
X4 —> 00 , x\ —» 0 limit of the 4-point function in (1.5) according to 

Jd2hx5(a4\Va+(x5)Va3(x3)Va2(x2)\ai) =: J d 2 ^ 5 A (2.14) 

= (X2)-A x-2a2(a3~ai) y2a1(2a0-a2) F(x,y) , * = J f - , j / = J ? - , 
x 23 x 23 

where in agreement with (2.13) and using that 2ot\ = —a+ 

3 3 

A := ^ A (a*) - A(2a0 - Y^ai - a+) = 2a\{a2 + a3 - 2a0) - 2a 2 a 3 . 
i= l i= l 

(2.15) 

2.3. A Virasoro algebra 

Analogously to the one-dimensional case one can construct generators which 
close, using the commutation relations (2.3) for collinear vectors, a Virasoro 
algebra 

1 1 /"o" 
Ln{e) = - Y] bn-k(e)bk(e) + — = 6„60 - J-a0(n + l)bn(e), n^O, 

2
 k&,n v2/i V h 

L0(e) = Y, b-n(e) bn(e) + ^ | ( | - 2a0). (2.16) 
n>0 

For n ^ 0 , using 

\bk(z1),L„n(z2)}=(bk-n(z2)+((^-l)b0+^(n-l))5ktn)kcoskeu, v V2n. \2h ' 
(2.17) 

we obtain, denoting w := V ? , 

[L-n(zi), Va(z2)} = 2a E f c ™2~" cos(n - k)9l2 : b-k{zx) Va{z2) : 
- 2A(a ) (n - \)w^n cosn012 Va(z2) + 2 a ( ^ = - l) (b-n(zi) Va{z2) 

+W2n cosn0i2Va(z2){bQ + 2a(n - 1))) 
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+a*w^((n - l)cosne12 - S 5 ^ » ) V a ( Z 2 ) , (2.18) 

where the meaning of the normal product is 

: bk V := bk V, for k < 0 , : bk V := V bk for k > 0 , (2.19) 

(we notice that for n = ±1 the very last term in (2.18) vanishes ), while for 
n = 0, from 

[bk(zi),L0(z2)} = bk(z2)k cos k912, (2.20) 

we obtain 

[L0(z1),Va(z2)]= (2.21) 

2a J2k w% coske12 • b-kizjVafa) : +^Va(z2) + 2a(± - l)Va{z2) b0 . 

The eigenvalues of LQ and the central charge operator do not depend on h 
and coincide with the eigenvalues in the one-dimensional case, (cf. (1.7)) 

Lo\aJ) = ^ V > = Aj\aJ), c = 1 - f a2
0 = 13 - 6(t + ±)(2.22) 

and we can use all the standard expressions for the singular vectors, as e.g., 
the singular vector at level two 

( i i ^ - L - a ) ^ " 7 " * } . (2.23) 

3. The null vector decoupling condition 

Let 2ai = -J j so that A(a\) = h(-^ — | ) . By a straightforward applica
tion of the commutator formulae derived above one proves the null vector 
decoupling identity 

(ap+1\Vap(zp)...Va2(z2)(tL
2_l(z)-L-2(z))\a1)=0, (3.1) 

which holds true for any z. 
We can partially express the matrix element (3.1) in terms of differential 

operators (here (ap+\,. •. ,a2\ := (ap+i\Vav(zp) •• -Va2{z2)) 

^(ap+u...,a2\(tLl1(z0)-L-2(z0))\a1)=({z0.£dZk)
2- (3.2) 

1 fc=2 
P P P V 2 

y ^ S0i z0 • ̂ 2 dZk - ( ] P 4a,a i — cos 0O») + ^ 4aiC*i —§ cos 29QA A. 
i=2 fc=2 »=2 W% i=1 Wi 

We consider first the 3-point null vector decoupling condition, which de
termines the possible "fusions" with the fundamental field with A ( a J = 2 ) . 
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The 3-point matrix element (with one screening charge) is determined by 
the LQ Ward identity as 

J' d2hX5(a3\Va+(x5)Va2(x2)\ai) =u,2(A(a3)-A(a1)-A(a3)) _ ( 3 3 ) 

Choosing the argument of the Virasoro generators as ZQ = x2 we can rep
resent (3.2) fully in terms of derivatives and integrating out the derivative 
terms with respect to £5 gives for the null vector equation 

2a(f{l-t)+2a)-f A(a2) = 0. (3.4) 

This equation for o does not depend on the charge a2 itself but rather on the 
scaling dimension 2A(a2) and is the same as the one for the 3-point matrix 
element without a screening charge. We obtain as in the one-dimensional 
case 2/i = l two solutions for A (03) 

A(a 3 ) = A(a 2 + a i ) , A(a3) = A ( a 2 - a i ) = A ( a 2 + a i + a 5 ) ; (3.5) 

the first corresponds to the screeningless case, the second to the matrix 
element (3.3). 

We shall now apply the relations (3.2) for the 4-point matrix element 
with one screening charge. In this case we can specialise the argument of 
the generators L-n(xj) in (3.2) to the coordinate of each of the two middle 
vertex operators Xj = x2, or Xj = x3 and thus obtain two identities 

0 = f J d2hx5(a4\Va+(x5) Va3(x3)Va2(x2) (tLl^n) - L-2(xi))\ai) 
= ViJd2hx5A + fd2hx5Ii, i = 2 ,3 . (3.6) 

Here A is the matrix element in (2.14) and T>i are differential operators 

V2 = V(x2,x3;a3) = (x2 • D)2 - x2 • D - (x2 • dX2)
2 - p2(x3 • dX3)

2-
2p cos9x2 • dX2x3 • dX3 + (2h - 4)(x2 • D - x2 • dX2 - pcos6x3 • dX3)+ 

Oh 

x2 • 9X2 + p2x3 -dX3 + (2 + —{l- t))((l +pcos6)(x2 • D - x2 • dX2)-

(p2 + pcos6)x3 -dX3) + 4aj3 x p2 sin2 6 H A(a3)/92sin26». (3.7a) 

and T>3 = V(x3,x2;a2) with 

D — oX2 + dX3, p" = —~ = - , 2p cos 9 = 2 5— = . 

Furthermore these operators are expressed as 

x2 / \ 
-fVi = (x2yA Ux + y-1)2- 4xy) £><(*, y) (z 2 ) A , i,3 = 2,3 , i ? j . 
x23 \ ' 

(3.8) 



208 P. Parian and V.B. Petkova 

The operators Di(x, y) here are given by formulae analogous to the two dif
ferential operators in (1.1), with the parameters a, /3,7,7' in (1.10) replaced 
by a, 0,7,7' 

a= -2a2a3 + h+^(l-t)-2A, J3 = 2a2a3 , 
7 = l + £ ( l - t ) - 2 A , f = l + £ ( l - i ) , (3.9) 

plus the additional terms 

ft d(q3) ; = A ( A - * ( 1 - * ) ) - * A ( q 3 ) J % ) ( 3 1 0 ) 

t x x ' t y 

respectively. These operators are precisely the AK operators (1.1) when the 
latter are rewritten on the matrix element (x^)A / A, which according to 
(2.14) differs by a prefactor from F(x,y). 

The integrands Ii of the remaining integrals in (3.6) are expected to 
be expressible as full derivatives in the integration variable so that these 
integrals vanish identically. Indeed we have checked this for the linear com
bination 

fd2hX5(h - %I2) = ffd*hX5((dXs-X2^-dX5-X3^)Z^ 

+dX5 • x52 ( ^ ^ - ^ ) - 9X5 • x53 ( » ^ - M a ) ^ = 0. 

In the screeningless case one recovers the same operators (3.7) but with 
different value A —> A' = — 2a\a2 — 2a\a3 — 2a2a3 to be inserted in (3.8). 
Changing back variables, this correlation function corresponds to a constant 
factor F(x,y) with parameters a' (5' = 0, trivially satisfying (1.1). 

4. Discussion 

We have revealed a hidden Virasoro symmetry in a 2h-dimensional model 
and have demonstrated that it leads to differential equations for the 4-
point correlation functions. This generalises a basic property believed so far 
to be intrinsically restricted to the 2-dimensional theories. This symmetry 
also allows to determine the leading short distance behaviour of the higher 
dimensional models purely algebraically, without having to perform the 
complicated multiple Mellin integral computation of the Symanzik method. 

The main features of the 2d theories - chiral factorisability, explicit sim
ple realisation of the Virasoro generators in terms of differential operators, 
simple behaviour under projective transformations - all turned out not to 
be crucial for the derivation. A weak point however of our investigation so 
far, which needs a further effort, is the treatment of the screening charge 
operators. 



A 2h-dimensional Model with Virasoro Symmetry 209 

The four-dimensional model considered here is still an unrealistic, toy 

model. In particular the four-dimensional analogs of the two-dimensional 

c < 1 minimal models are non-unitary 6 . On the other hand despite the 

impressive recent developments in the perturbative supersymmetric N = 4 

theories, there are still few exact results on conformal points beyond the 

per turbat ion theory. It remains to be seen whether the generalised Coulomb 

gas model, or some related extension, could be used as a building block in 

more realistic applications. 
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After reviewing the construction of 3D integrable generalized Zamolodchikov-
Bazhanov-Baxter models starting from the Sergeev mapping operator, we show 
how the L-operator of the 2D-integrable Bazhanov-Stroganov model follows 
from a Linear Problem by imposing quasi-periodicity. The 3D classical mapping 
and the associated 3D parametrization is used to derive isospectral transfor
mations for the inhomogenous classical and quantum 2D-Bazhanov-Stroganov 
model transfer matrices. 

1. Introduction 

Whereas there is a good understanding how to construct systematically 2D 
integrable lattice systems, the construction of 3D integrable lattice mod
els still is relying on special solutions of tetrahedron equations (TE) which 
guarantee the integrability. Most of the models studied during the past 
two decades are generalizations of Zamolodchikov's 1981 construction1 and 
its 1992 generalization by Bazhanov and Baxter2 using cyclic root-of-unity 
structures. Only very recently a new solution of the TE based on a q-
oscillator algebra involving Uq(sl(n)) structures has been found3. Consid
ering a 3D integrable model, quite immediately one may obtain a related 

mailto:gehlen@th.physik.uni-bonn.de
http://jinr.ru
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2D integrable model by imposing quasi-periodical boundary conditions in 
the third spacial direction. 

In this talk we consider the recent generalized version of the 3D inte
grable Zamolodchikov-Bazhanov-Baxter (ZBB) model5 and its 2D reduc
tion, the Bazhanov-Stroganov (BS) model7. We show explicitly how the 3D 
model can be used to derive intertwining relations and isospectral trans
formations of the 2D BS model. It seems to be hard to find these features 
without our insight from the 3D structure. 

2. Vertex formulation of the generalized ZBB-model 

In the vertex formulation of the ZBB-model4,5 the quantum variables are 
attached to the links i of a 3D oriented lattice. They are taken to be elements 
(UJ, Wj) of an ultra-local affine Weyl algebra at root of unity: 

Uj • Wj = uSi-i Wj • UJ; UJN = 1; AT e Z; N > 2. (2.1) 

At each link i there shall also be a scalar Kj and we define tt>, = (UJ, w^, Kj). 
In the formulation of Ref.5 the basic object of the model is the operator 7£i23 

Fig. 2.1. Left: The six links of the basic oriented lattice forming a vertex A, and (shaded) 
the auxiliary planes through the initial variables roi, tt)2, ro3 and through the final 
variables ro'j, ro2, fo'3 . On the right hand side of the Figure we show the four co-currents 
in the four sections of the initial auxiliary plane around toi. 

(defined to be invertible, rational and canonical) which maps the triple of 
the dynamical variables tt>i, tt>2, fD3 on the incoming links onto the triple 
tDj, tu2, ttig on the outgoing links: For any rational function $ of the 
u i , . . . , W3 we define 

(f t l23°*)(ui ,Wi,U2, . . . ,W3) = *(u ,
1 ) wi,U 2 , . . . ,W^) . (2.2) 
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We further postulate at each variable m, the Linear Problem 

0 = ($B | +uj1'2{^b\ni + ($ c |w i + Ki^d lu jWi , (2.3) 

which relates the four co-currents ( $ a | , . . . , ( $ j | defined around the vari
able tt)i as shown in Fig.2.1. Demanding a Baxter Z-invariance, the Linear 
Problem (2.3) leads to the following unique expression for the mapping 

K2u[ = KiU^"1 + K3UJ_1W^1W3 — W1/2KiK3U^1W^1W3; 

u2 = ul1 " W1'2UJ"1W1U3"
1 + KiWiU^Uj1 ; 

w': = WjW^W^1 — (J1'2W2U3W3"
1 + K3U3; 

w i w 2 = w 2 wi; u 3 u 2 = U2U3; w'3 u'j = Uiw^1 . (2.4) 

Let us represent the root of unity afhne Weyl elements by N x Af-matrices: 

U E « X ; W E M Z ; u, w£C; X Z = W Z X ; X w = ZAr = l . 

X \P) = u0 |/3); Z |/?) = |/3 + 1); (a\/3) = 5a,0 , (2.5) 

so that (2.4) become relations of N3 x N3 matrices. The Ar-th powers of 
the Weyl elements are centers and we write: 

u f = uf = Uj; w f = wf = Wj; (u + w)N = U + W. (2.6) 

Now, taking the Nth powers of (2.4) and using the last of Eqs.(2.6), the 
quantum mapping 7Z123 induces a functional mapping 1Z\23 of the centers 

(Kj = «? )•• 

Wx Wk Wx W3 

W{ W2 Wx W2 + U3W2 + K3 U3 W3 ' 

U2 = U* = U1U3, . 
U2 Ui U2 U3 + U2Wx + Kx Ux Wx ' 

U[ = W[ = K2U2W2 

Ux W3 Kx Ux W2 + K3 U2 W3+KxK3UxW3'
 { ' ' 

Taking Nth roots and fixing some phases in order to obtain a relation for 

ux,. • • ,w'3 instead of for the Ux, • • • , W3, we write this as 

(ll{f
2loTpj(ux,wx,u2,...,w3)

 d= ip(u'x, w'x, u'2, . . . ,w3). (2.8) 

A remarkable feature arises : 7̂ 123 decomposes into a matrix conjugation 
R-123 (this is a N3 x Ar3-matix) and the purely functional mapping TZxii : 

Kx23 o ¥ = R123 (n[g o * ) R.^3 . (2.9) 
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With little effort it can be shown5'6 that Tl^k satisfies the TE 

72-123 72-145 7̂ -246 7̂ 356 = 72-356 T2-246 7̂ 145 7^123, 

and 1Qjl obeys the analogous functional TE. So (2.8) defines a classical 
integrable mapping. R123 can be written as the weighted cross ratio of the 
Bazhanov-Baxter cyclic functions wp(n), in components: 

T>hhh _ : (h -U)i, Wpi (i2 - h)Wp2 (j2 - jl) . . 
R i l i 2 i 3 ~ < W , 2 + ^ Wp3(j2-nK4(i2-ii) ( 2 0 ) 

where . 
w p ( n ) _ y . „N , „ JV 

tup(n — 1) 1 - w n i ' 
a ^ + j / * = i ; n e Z j v (2.11) 

with p — (x,y). In (2.10) p i , . . . ,^4 are four points on the Fermat curve 
determined by the affine parameters of the initial and final Weyl variables: 

u2 K2 u'o u2 ,n 1 r.\ 
xi = —J75 ; x2 — 1 / 9 ; z 3 = ; X1Z2 = w ^ ^ . (2.12) 

Up to now we have just mentioned the mapping 72i23 at a single vertex. 
In order to construct a 3D integrable system we have to consider such a 
mapping at each vertex of an extended 3D lattice. Let e i , e2, e3 be vectors 
spanning the unit cell of the lattice. We label the variables on the links by 
vectors n = rnei + ri2e2 + nse^. So, instead of (2.7), for the functional 
part of the mapping we get the system of equations9 

W1>n W2, n+e 2 

. . . (2.13) U2,n+e2 _ ^3 ,n . t^l ,n+ei W^3,n+e3 

U2,n U3 

which relates the classical variables along the 3D lattice. We change 
variables9 introducing for each link n three functions Ti<n, T2,n, T3,„ and 
three complex pairs Xni = (X^,Xni),yn2 = (Y^a,Yn2),Zn3 = {Z'n3,Znz) : 

TT — ( T\N "3 *"2 T2,n , T T , / , NJV^™3 *n2
 r 3 ,n+e 2 

^ l , n - ( , - l ) v _ y ~ VVl,„ = ( - 1 ) . 
1n2 -"713 '2 ,n+e 3 ^ n 3

 In2 '3,n 

N ^n3 ~ -^ni Ti<n u r , 1 s jy ^ « 3 — ̂ m r 3,n 
^2,, = (-ir "3 _ J'1 1 ,n ; W2,n = (-i) 

1,n2'"3 U;3 ^ 3 / ' ••• ' \ c c / 

•^ni ^ n 3 Tl,n+e3 -"n3
 — -^ni ^ . n + e i 

(A-QjB-D) 
(A~D)(B-CY 

(2.14) 
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Then (2.13) become trilinear Hirota equations for the r-functions: 

(Xa - Xp){X'(j - X'1){X1 - Xa)Ta 

+ {Xa - Xg)(Xf3 - Xy)(X' - Xa)Ta,nT0,n+e-^,n+e« 
(2.15) 

— (Xa — X0)(Xp — Xy)(X^ — Xa)Ta,n+e/3r/3 ]n+e7T7)n 

+ (Xa - X'p){Xp - Xir)(X1 - Xa)Ta 

with {a,P,j} any even permutation of {1,2,3}; X\ = Xni, Xi = Y„2, etc. 
Eqs. (2.15) can be solved in terms of the rational g-soliton functions9 H: 

ra,n = H ({/(->}) with H({fi}) = d e t [ ^ ~ ^ P ° - (2-16) 

The functions H have g arguments /_,• and 2g parameters Vj = (Pj, Pj). 
They solve (2.15) because they satisfy to a double Fay-type identity. The 
arguments / are factorized rational expressions 

j fn ) = fj(XBl) a}(yn2) Ijtn; ff>n) = fjiZ^ajiy^) /,-,„; 

f?'n) = ti<yn*)Ii,» With f,-(̂ ) = g ^ / , ; ^M) = { 2 5 } ; 

n i - 1 ri2 —1 «3 —1 

,̂n = n v w n <T7I(^) n °^ > ^=*• ô ?) 
(=0 m=0 n=0 

Inserting (2.16) and (2.17) into (2.14) all classical variables {/i,n, £^2,n, • • • > 
W3,n can be written in terms of the function V defined as 

V({fj},A,B) = -(-l)N^=-^H({fj(A)})/H({fj(A)aj(B)}); 

Ul,n = V ({fjlj,a} , yn2^
Zn3) ', U2,n = V ({fjCTj (y„2 Kj,n} , Xni, Zn3) ; 

U3,n = V ( { / , ' W . Xni> 0>n2 ) I ^ l , n - - V ({/.,-/,,„} , Z„3 ,}>„,); ete. 

(2.18) 
We get Wj,n from £/ijn permuting the last arguments and changing sign. 
Moving away from the origin n = 0, the first argument of the U\>a,..., Wsin 

at each step picks up one more factor aj(X(), a~1{ym) or aj(Zn) via 7,>n. 
The simplest choice is g = 0 , i.e. to take H({fj}) = 1 , so that 72.^ 
becomes trivial. In (2.7) this amounts to take U[ = Ui and W( = Wi. 
In this case the solution to (2.7) can be expressed in terms of 3 parameters 
and the R123 reduce to the ZBB Boltzmann weights. 
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Fig. 3.1. Auxiliary plane in the neighborhood of the Weyl variables roi and tx>i. 
Quasi-periodic boundary conditions are assumed between left and right co-currents. 

3. Bazhanov-Stroganov L from the Linear Problem 

Let us write the Linear Problem (2.3) for the variables tt»i and tt>i, 
see Fig.3.1, imposing quasi-periodic b.c. between the left and right hand 
columns: 

0 = (ipo\ +&1/2{i>i\ni + (</>o|wi +C«i(<Ai|uiw1 ; 

0 = (V>i|+ w1/2(V>o|ui + (</>i|wi + Ki(</>0|uiwi . 

In matrix form, writing {<j>\ = ((<Ao|, (^i|), {i>\ = ((ipo\, {i>i\), this becomes 

( ^ | ( w e u i u i - l)wl1 = (<l>\-L1(0 

1 — W 1 ^ 2 ^ U i U i K i W i W ] " 1 — U ^ C J 1 / 2 - K l W i W j " 1 ) 

with 

£ui («i — w 1 / 2wiw 1
1 ) —u^-^^uiUiki + wiWj - l 

• (3-1) 

Only the three Weyl elements wiWj 1 , u i , ui appear. So we can use the 
iV-dim. representation with X and Z as in (2.5) 

wiwj" = wiu>i~l Z ; ui = u\ X ; Ui = u\ X~ . (3.2) 

Apart from some rescaling and a gauge transformation, (3.1) is the L op
erator proposed by Bazhanov and Stroganov7: 

L(X;q,q') 

( i + A » Z 
Mg/V 

Vq , 

V X [ UJXq> 
fJ-qfJ-q' 

AX" 

XiVXqXgi + 

Vq' 

VqVq' 

1 , 

\ 

if we put X = (u u\u\ xq yq £) 1 and 

-1/2 Vq_. ^ 1 = -i_yqW_ 
K\= U) 

1/2 xq 

Vq' 
K\=W 

Xq' W\ XgXq'lIqUq' 

(3.3) 

(3.4) 

where the variables xq,yq, fiq satisfy the Chiral Potts (CP) Baxter relations 

„JV , „,JV y? = k « < + 1); fc< = 1 - fcVo N ; k< = 1 - * ' M ? (3.5) 
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(same for xq>, yq>, fiql). k' is the temperature parameter and fc2 = 1 — fc'2 . 

The transfer matrix of the periodic BS-quantum chain of length Q is 

T = TrC2M; with M = L(X;q0,q'0) ... L(X; g g - i . ^ - i ) , (3.6) 

where each L has its pair of rapidities qi, q'it but fc shall be the same for 
all L. The BS quantum chain is integrable7'8 because of the intertwining 

E Ri>iLwLltWLj£l")= E Ki^KtWRn^^. (3-7) 
31,32,(3 3l,32,P 

Here we have written L with matrix indices: L is a 2 x 2 matrix (latin indices 
taking the values 0,1), whose entries are N x N matrices (greek indices 
running over 0,1,.. .,N — 1). Ris& twisted six-vertex .R-matrix. The great 
interest in the model defined by (3.3) is due to the second intertwining 
relation in the iV-dim. (quantum) space: 

E S**(P,P',?,?') L^(\;p,p>) L^{\;q,q') 

= J2 Llt(\;q,q')La
kt(X;p,P') S ^ f o p ' . ^ M S . S ) 

0i02,k 

since S turns out to be the product of four CP Boltzmann weights7: 

50
a\i\(p,p\q,q') = Wpql(a1-a2)Wp/q(p2-Pl)Wpq(P2-a1)Wplql(l31-a2). 

Consequences of this relation have been essential in solving the CP-
model10'11. Using the 3D interpretation of the operators L, one can also 
interpret (3.8) in 3D, obtaining S as the product of two operators (2.10)12: 

Saia2^02(p,p',Q,Q') = E R M £ £ : £ ; - « £ • (3.9) 
<7,T£ZAr 

R and R depend on four Fermat points each (pi,...,p4; p~i,..-,Pi), 
which are related to the CP variables of S by 

Vq' %q xq - xq' Vq . 
xi = ——; x2 = — ; x3 = ——; x\ = — ; x2 = ——; etc. 

u>xp yp> oJXp yp way 

With pi = (xi,yi); Opt = (to~1x~1, w~1/2x^1yi) we find 

Wpql{ai-a2) = r- Wpq{p2 -otx) = r-r r-. 
•woPAai-a2) wP3(P2-ai) 
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4. The classical BS-model, isospectral transformations 

An important application of the 3D approach to the BS model is the deriva
tion of an isospectral transform of the BS-transfer matrix. We first show an 
isospectrality of the classical inhomogenous version of the BS-model. We 
define the classical counterpart Aclass of an operator A as its root-of-unity 
sum (each matrix element summed separately): 

Aclass^N) = n.eZN AW). 

So, from (3.1) we define the classical BS-L-operator £, writing A = £N : 

(i + KUxUxKxW^wr1 c/i(i + KiWi wr1) \ 
£(A) = L ? ° " ( 0 = - - - - , - - • 

V AU^Ki + WWi1) WiW^ + AKiUiUj 
(4.1) 

To define the classical BS-transfer matrix in the 3D framework, we build the 
monodromy along the e2-direction. The 3D lattice is taken quasiperiodic in 
the e3-direction after two steps as in Fig. 3.1. We consider only one layer 
in the ei direction. So we get the monodromy M and transfer matrix T: 

T(A) = TrC2 M(A); M{A) = C0{A) d(A) • • 

with = / 1 + A UhnUUnKhnVltn Uhn(l + #i,„Vi,n 

"~ \ A Ulin (Ki,n + Vi,n) Vhn + A khnUUnUltn 

where we have abbreviated Ui:ne2 = UiiTl, Uiine2+e3 = Ui,n, Vi,n — 

W /l1nG2/W / ri,ne2+e3 ^ l : n e 2 = -Kl.n, ^ l : n e 2 + e 3 = K\,n-

In order to derive an isospectrality of T , we commute an auxiliary 
operator ££u x through M such that 

£%UX(A)M(A) = .M*(A)£%UX(A) with £g"x(A) = £%"X(A), (4.4) 

since then Trc, M = Trc, M*. We shall see that the 3D-functional 
(f) mapping 7£123 Eqs.(2.7) can be used to solve the problem (4.4). We take 

the initial auxiliary operator £QUX to be of the same form as £o in (4.3) 
but the index 2 replacing the index 1. 

Starting to commute the £QUX through Ai, in the first step £ou x^o = 
£* £oux w e a s s u m e t n a t a i s o both matrices on the right hand side have the 
form (4.3): for ££ with the variables U{fi, W{fi, Uffi, W ^ and for £? u x 

with the variables U£0, W% 0, U^ 0, W* 0. We cla™ that the mapping 

S^ : Uifi, Wlfi, C/2,0, W2,o, Ui,o, WliQ, U2,o, W2fi 
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solving CQUXCO = CQ C{UX is obtained by composing the two mappings 

M S : ^1,0, Wi.o, U2t0, W2,0, U3, W3 ,-> UlQ, Wl0, Ul0, W2*,o, %, W^ 

"123 Tl[g : Ulfi, Wlfi, U2fi, W2,o, Ui W3 -> ^ 0 , W{^ U^ W$>0, U$, Wj, 

(using in TZ123 the constants K\,K2,K3 and in 7? ,^ then Ki,K2,K3) 
eliminating the auxiliary variables U3 and W3 by imposing the periodic 
conditions U3 = U3 and W3 — W3. The proof and the detailed somewhat 
lengthy formulas for (4.5) are given in Ref.12. These become quite simple 
in the parametrization (2.18) which we shall use in the following. 

Using (2.18), the entries of (4.3) depend on the variables ^ 0 , •••,yn 

and ZQ, Z\, but not on X (apart from the fj and Vj which we shall not 
indicate explicitly). All Cn and ££u x depend on ZQ from Ujtn and Wj,n and 
on Z\ from Uj>n and Wj,n- So we shall also not indicate the dependence on 
ZQ, Z\ explicitly and we write just Cn ({ij(Yn)Ijjne2} ,yn) or even shorter 
£n ({fj Ij,no2 },yn) hi place of (4.3) and analogously £gu x {{fjVj (3^)} , X) 
in place of CQUX ({(j(X)aj(yo)} , X). In this notation the intertwining and 
the mapping (4.5) are found12 to take the form 

Qux({fj°j(yo)},x) c0({ij},y0) = Codi^ix)}^) crx{{ij},x), 
where the periodicity requirement U3 = U3 imposes g constraint equations 

on the suppressed variables Vj • We see that in the intertwining Co picks up 
a factor 0j{X) and the argument of C{UX gets divided by ffjf^o). Moving 
the auxiliary operator all through the monodromy then leads to 

Cr({fj<rj(yo)},X)M = A T ^ ^ n ^ V ^ ) } ' * ) 

with M = Co({f,-},y0) ... £Q-i({fjn&'oVW}.y«-i); 

M* = Co ({fj<Tj(x)},y0)... cQ-! ({fj n?=~oV(^(*)} ' ^ - 0 • 
Imposing periodicity (4.4) leads to the 5 equations Jj, Qe2 = 1 or explic
itly 

n&Vo*) ̂ n ^ { ^ } = 1. (4-7) 
Eqs. (4.6) and (4.7) together fix the soliton parameters P'p Pj of the func
tions H. If these Eqs. are fulfilled, Tr M and Tr M* are isospectral. Since 
M* is obtained from M by the substitution fj —> ft = fj<jj{X), we get 
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a non-trivial isospectrality of the inhomogenous (all 3^ may be chosen to 
be different) classical BS-chain if some fj j^ 0. 

In order to derive an isospectrality for the inhomogenous quantum BS 
transfer matrix (3.6), again we pull an auxiliary L-operator through the 
monodromy. So we need to know the quantum intertwining operator S12 

S12 L(£; u2, u2, w2, w2, «2, K2) • L(£; ui, iti, wi, wi, KI, KI) 

= L(f; u\, u\, w\, w\, KI, KI) • L(f; u\, u*2, u^, w*2, K2, K2) S12. (4.8) 

Here the u\,... ,W2 shall be related to the ui,...,w2 by the classical 
mapping (4.5). In order to use our previous classical intertwining results we 
use the quantum operators L in the form (3.1) rather than (3.3). If we take 
the mapping (4.5) to be trivial, we get back to (3.8) and (3.9). However, 
for non-trivial 72.0 it is easy to see12 using (2.9) that the solution to the 
fully dynamical equation (4.8) is S12 = Tizi^R,^ o Rj23) • R123 , where the 
Fermat parameters x\, x2, £3, x\, x2, £3 determining the matrices R follow 
from (2.12) and (2.18). In the parametrization (2.18) we can write (4.8) as 

8{{fJ},x,y)L({fjaj(y)},x)L({fj},y) 

= LUf^iX)}^) L({fj},X) S({fj},X,y). (4.9) 

This is analogous to the classical case, except that also a matrix conjugation 
by S appears. Choosing L {{fjCTj(y)} , X) as the initial auxiliary operator, 
we get isospectrality of the transfer matrices T and T* where 

K T = T*K; K = Tr c „S ({/,•}, X,y0)... S ({/,- IMQ-i)e2}, ^ , ^ - 1 ) • 

We can see directly that each quantum operator Ln of the form (3.1) 
with (3.2), when parameterized according to (2.18), depends on the rational 
functions H ({fj}) only via un and the ratio WnW'1. In the product unun 

the H drop out because of (4.6). Now un and un occur only multiplying 
X n resp. X " 1 and wnw~l always multiplies Z„. So we can absorb12 all 
the dependence on the H ({fj}) in a change of normalization of the X n 

and Z n which preserves X n Z m = a / n ' m Z m X„. The spectrum of resulting 
redefined transfer matrix becomes independent of the choice of the fj. 
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Exact Solution of Two Planar Polygon Models 

Anthony J. Guttmann and Iwan Jensen 

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems 
Department of Mathematics and Statistics 

The University of Melbourne, Victoria 3010, Australia 

Using a simple transfer matrix approach we have derived long series expan
sions for the perimeter generating functions of both three-choice polygons and 
punctured staircase polygons. In both cases we find that all the known terms 
in the generating function can be reproduced from a linear Fuchsian differ
ential equation of order 8. We report on an analysis of the properties of the 
differential equations. 

1. Introduction 

A well-known long standing problem in combinatorics and statistical me
chanics is the enumeration by perimeter of self-avoiding polygons (or walks) 
on a two- or three-dimensional lattice. Recently, we have gained a greater 
understanding of the difficulty of this problem, as Rechnitzer14 has proved 
that the (anisotropic) generating function for square lattice self-avoiding 
polygons is not differentiably finite15. This property had been conjectured, 
on numerical grounds5, but not proved. So the generating function cannot 
be expressed as a solution of an ordinary differential equation with poly
nomial coefficients. There are many simplifications of this problem that 
are solvable1, but these simpler models impose an effective directedness or 
other constraint that reduce them, in essence, to one-dimensional problems. 

One model, that of three-choice polygons, has remained unsolved despite 
the knowledge that its solution must be D-fmite. Recent numerical work7 re
sulted in an exact differential equation apparently satisfied by the perimeter 
generating function of three-choice polygons. Similarly for another model, 
that of punctured staircase polygons, that is a staircase polygon with an 
arbitrary staircase puncture. Again we found8 that the perimeter generat
ing function is apparently satisfied by an exact differential equation. While 
our results do not constitute rigorous mathematical proofs the numerical 
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evidence is overwhelmingly compelling. 
The next two sections consider these two models, in turn. 

2. Three-choice polygons 

Three-choice self-avoiding walks on the square lattice, Z2 , were introduced 
by Manna13 and can be defined as follows: Starting from the origin one can 
step in any direction; after a step upward or downward one can head in 
any direction (except backward); after a step to the left one can only step 
forward or head downward, and after a step to the right one can continue 
forward or turn upward. Alternatively put, one cannot make a right-hand 
turn after a horizontal step. Whittington17 showed that the growth constant 
for three-choice walks is exactly 2, so that if wn denotes the number of such 
walks of n steps on an infinite lattice, equivalent up to a translation, then 
wn ~ 2n+°(n\ It is perhaps surprising that the best known result for the 
sub-dominant term is 2°(n\ but attempts to improve on this have been 
unsuccessful. Even numerically, there is no firmly based conjecture for the 
sub-dominant term, unlike for ordinary self-avoiding walks, for which the 
sub-dominant term is widely believed to be O(logn). 

As usual one can define a polygon version of the walk model by requir
ing the walk to return to the origin. So a three-choice polygon10 is simply 
a three-choice self-avoiding walk which returns to the origin, but has no 
other self-intersections. There are two distinct classes of three-choice poly
gons. The three-choice rule either leads to staircase polygons or imperfect 
staircase polygons3 as illustrated in figure 2.1. In the case of staircase poly
gons any perimeter vertex can act as the origin of the three-choice walk 
(which then proceeds counter-clockwise), while for imperfect staircase poly
gons there is only one possible origin but the polygon could be rotated by 
180 degrees. If we denote by tn the number of three-choice polygons with 
perimeter In then, tn = 2ncn + 2pn, where c„ is the number of staircase 
polygons and pn is the number of imperfect staircase polygons with perime
ter 2n. Note that tn, Pn and c„ all grow like 4™ and in particular we recall 
the well-known result that cn+\ = Cn = ^p[(2™) where C„ are the Catalan 
numbers. 

In this paper we report on recent work7 which has led to an exact 
Fuchsian11 linear differential equation of order 8 apparently satisfied by 
the perimeter generating function, T{x) = Y^n>0tnx

n, for three-choice 
polygons (that is T(x) is conjectured to be one of the solutions of the 
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Staircase Imperfect staircase 

Fig. 2.1. Examples of the two types of three-choice polygons. In the middle panel we 
indicate the origin (O) and the direction of the first step (note that rotation by 180 
degrees also leads to a valid three-choice polygon). The right panle shows the decompo
sition of an imperfect staircase polygon into a sequence of 2-4-2 non-intersecting walkers, 
each expressible as a Gessel-Viennot determinant. 

ODE, expanded around the origin). The first few terms are 

T{x) = 4a;2 + 12a;3 + 42a;4 + 152a;5 + 562x6 + • • • . 

(The generating function for the coefficients pn is no simpler.) 
If we distinguish between steps in the x and y direction, and let im>„ 

denote the number of three-choice polygons with 2m horizontal steps and 
2n vertical steps, then the anisotropic generating function for T(x, y) is 

T(x,y) = X>m,nzm2/n = X > n ( a O y n , 
m,n n 

where Hn(x) — g'fc' is the (rational16) generating function for three-choice 
polygons with 2n vertical steps. In earlier, unpublished, numerical work, we 
found that, for imperfect staircase polygons, the denominators are: 

5„(x) = ( l - a ; ) 2 n - 1 ( l + a ; ) ( 2 " - 7 ) + n even, 

and 

Sn{x) = {l-xfn-\l+x){-2n~&^ n odd. 

This was subsequently proved by Bousquet-Melou2. Unfortunately, we still 
do not have enough information to identify the numerators. 

It is also possible to express the generating function T{x) as a five-fold 
sum, with one constraint2, of 4 x 4 Gessel-Viennot determinants4. This 
is clear from the right panel of figure 2.1, where the enumeration of the 
lattice paths between the dotted lines is just the classical problem of 4 
non-intersecting walkers, and these must be joined to two non-intersecting 
walkers to the left, and to two non-intersecting walkers to the right. Then 
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one must sum over different possible geometries. The fact that the gener
ating function is so expressible implies that it is differentiably finite12. 

Next we discuss work leading to an ODE for the perimeter generating 
function of three-choice polygons. In7 we generated the counts for three-
choice polygons up to half-perimeter 260. Using numerical experimentation 
we found what we believe is the underlying ODE. This calculation required 
the use of the first 206 coefficients with the resulting ODE then correctly 
predicting the next 54 coefficients. The possibility that this ODE is incorrect 
is extraordinarily small, but this does not of course constitute a proof. 
Unfortunately we cannot usefully bound the size of the underlying ODE, 
otherwise we could use the knowledge of D-finiteness to provide a proof. 
Bounds following from closure theorems12 are too large to be useful. 

The algorithm used to enumerate imperfect polygons is a slightly mod
ified version of the algorithm of Conway et al.3, and is described fully in7. 

2.1. The Fuchsian differential equation 

Recently Zenine et al.18~20 obtained linear differential equations whose so
lutions give the 3- and 4-particle contributions x ^ and x ^ to the Ising 
model susceptibility. In7 we used their method to find an ODE which has 
as a solution the generating function T(x) for three-choice polygons. This 
involves a systematic search for a differential equation of the form: 

m ,k 

£ W ^ ( * ) = 0, (2.1) 
fc=0 

such that T{x) is a solution to this differential equation, where the Pk(x) 
are polynomials. To make it as simple as possible we started by searching 
for a Fuchsian11 equation. Such equations have only regular singular points. 

We searched systematically for solutions by varying m and qm, the de
gree of the polynomials Pm(x). In this way a solution with m — 10 and 
qm = 12 was first found, which required the determination of L = 206 un
known coefficients. With 260 terms in the half-perimeter series, there are 
more than 50 additional terms with which to check the correctness of this 
solution. Having found this conjectured solution the ODE was then turned 
into a recurrence relation and used to generate more series terms in order 
to search for a lower order Fuchsian equation. The lowest order equation 
found was eighth order and with qm = 30, which requires the determination 
of L = 321 unknown coefficients. Thus from the original 260 term series 
this 8th order solution could not have been found. This raises the question 
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as to whether perhaps there is an ODE of lower order than 8 that generates 
the coefficients? The short answer to this is no. 

So the (half)-perimeter generating function T(x) for three-choice poly
gons is conjectured to be a solution of the linear ODE of order 8 

£ P f e ( x ) c S ^ ( a : ) = 0 (2-2) 
fe=0 

with 

P8(x) = x3(l - 4:r)4(l + 4z)(l + 4x2)(l + x + 7x2)Q8(x), (2.3) 

where Qs{x) is a polynomial of degree 25, which together with the remaining 
polynomials Pk(x) are given in7. 

The singular points of the differential equation are given by the roots 
of Ps(x). One can easily check that all the singularities (including x = oo) 
are regular singular points so equation (2.2) is indeed of the Fuchsian type. 
Using the method of Probenius one can obtain from the indicial equation 
the critical exponents at the singular points. These are listed in Table 2.1. 

Table 2.1. Critical exponents for the regular singular points 
of the Fuchsian differential equation satisfied by T(x) . 

Singularity 
x = 0 
x = 1/4 
x = - 1 / 4 
x = ± i/2 
1 + x + 7x2 = 0 
X = OO 

Qs(x) = 0 

Exponents 
- 1 , 0, 0, 0, 1, 2, 3, 4 
- 1 / 2 , - 1 / 2 , 0, 1/2, 1, 3/2, 2, 3 
0, 1, 2, 3, 4, 5, 6, 13/2 
0, 1, 2, 3, 4, 5, 6, 13/2 
0, 1, 2, 2, 3, 4, 5, 6 
- 2 , - 3 / 2 , - 1 , - 1 , - 1 / 2 , 1/2, 3/2, 5/2 
0, 1, 2, 3, 4, 5, 6, 8 

A careful local analysis revealed that near the physical critical point 
x = xc = 1/4 the singular behaviour is 

T(x) ~ A{x)(l - Ax)~1/2 + B{x)(l - Ax)~1/2 log(l - 4x), (2.4) 

where A{x) and B(x) are analytic in the neighbourhood of xc. Note that 
the terms associated with the exponents 1/2 and 3/2 become part of the 
analytic correction to the (1 — 4a;) - 1/2 term. Near the singularity on the 
negative x-axis, x = X- = —1/4 the singular behaviour is 

T(x)~C(x)(l+4x)13/2, (2.5) 
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where again C(x) is analytic near x_. Similar behaviour is expected near 
the pair of singularities x = ±i /2, and finally at the roots of 1 + x + 7x2 

one expects the behaviour T(x) ~ D(x)(l + x + 7a;2)2log(l + x + 7a;2). 
We can simplify the 8th order differential operator found above. We 

first found three solutions of the ODE, each corresponding to an order one 
differential operator. Denoting these by L\ , with i — 1,2,3, we found that 
the differential operator could be written as L^ = L^LyL^'L^ ', where 

is a fifth order differential operator, further decomposable as L^ = 
i(3)£,(2). This then allows us to write down the form of the 8 x 8 matrix 
representing the differential Galois group of L^8\ in an appropriate global 
solution basis. To determine the asymptotics one would need to calculate 
non-local connection matrices between solutions at different points. This is 
a huge task for such a large differential operator. Instead, we have developed 
a numerical technique that avoids all these difficulties, described below. 

To analyse the asymptotic behaviour of the coefficients, we first trans
form the coefficients so that the critical point is at 1. The growth constant 
of staircase and imperfect staircase polygons is 4, so we consider a new 
series with coefficients rn = £n+2/4™. Thus the generating function studied 
is 1l{y) = J2n>o rnVn = 4 + 3y + 2.625y2 H . From equations (2.4) and 
(2.5) it follows that the asymptotic form of the coefficients is 

WW,) - «. - ^ £ (**S»±* + (-!)» ( ^ ) ) + 0 ( A - ) . (2.6) 

The last term includes the effect of other singularities, further from the 
origin than the dominant singularities. These will decay exponentially since 
A > 1 in the scaled variable y = x/A. 

Using the recurrence relations for tn (derived from the ODE) it is easy 
and fast to generate many more terms r„. In7 the first 100000 terms were 
generated and saved as floating point numbers with 500 digit accuracy (this 
calculation took less than 15 minutes). With such a long series it is possible 
to obtain accurate numerical estimates of the first 20 amplitudes Oj, bi, Ci 
for i < 19 with a precision of more than 100 digits for the dominant am
plitudes, shrinking to 10-20 digits for the the case when i = 18, or 19. In 
making these estimates the exponentially decaying terms were ignored. In 
this way an earlier conjecture3 that ao = ^f/j, was confirmed. Other am
plitude estimates include b0 = 3.173275384589898481765 . . . and CQ = ^ | , 
though no one has been able to identify 6o- However, further sub-dominant 
amplitudes have been estimated7, such as ai = 8 J ? 3/2» a 2 = 334^3^3/2» 
M J _ _ -10484935 „ n J _ .225 _ -16575 * J _ 389295^ Tf 
a n d a 3 _ 248832\/3TT3/2 ' a I U l °X " P 5 7 ? ' °2 ~ 16*3/2 , a n d C3 - 1287r3/2 • « 
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seems likely that the amplitudes 7r3/2V/3aj and 7r3/2Cj are rational. 
We have also looked at the area generating function. For staircase poly

gons the area generating function is given by 

Ji (1,1,9) 
A{q) = J2 an(T = 

Jo(l, !,<?)' 

(-where Jj = J2n>o (~ (q)|(i-g"+i)J—> i ~ °>l- Based on a 500 term 
series, our analysis suggests that the area generating function is of the form 

(j (i l )}i~q,1 • That is to say, the leading singularity occurs at q = I/77, 
where 77 is the first zero of Jo(l,l,q), and F and G are regular in the 
neighbourhood of q = 1/rj. The coefficients thus behave asymptotically as 

an = \qn]A{q) ~ const.rj-nn3/2. 

The solution is not, however, of the simple product form as found for 
staircase polygons. We can see this by constructing Pade approximants 
of steadily increasing order, which do not stabilise. 

3. Punctured staircase polygons 

Punctured staircase polygons6 are staircase polygons with internal holes 
which are also staircase polygons (the polygons are mutually- as well as self-
avoiding). In6 it was proved that the connective constant /J, of fc-punctured 
polygons (polygons with k holes) is the same as the connective constant 
of un-punctured polygons. Here we discuss only the case with a single hole 
(see figure 3.1). The perimeter length of a punctured staircase polygons is 
the outer perimeter plus the perimeter of the hole. We denote by pn the 
number of punctured staircase polygons of total perimeter 2n. The results 
of8 indicate that the half-perimeter generating function has a simple pole 
at x = xc = 1/fj, = 1/4, though the analysis6 clearly indicated a more 
complicated critical behaviour. 

Here we report on recent work8 which led to an exact Fuchsian linear 
differential equation of order 8 apparently satisfied by the perimeter gener
ating function, V(x) = ^n>oP« : E" ' f° r punctured staircase polygons (that 
is V{x) is one of the solutions of the ODE, expanded around the origin). 
The first few terms in the generating function are 

V(x) = xs + 12a;9 + 9 4 E 1 0 + 604a;11 + 3463a;12 + • • • . 

The situation is very similar to that of three-choice polygons. This is per
haps not surprising, as one can represent punctured staircase polygons as 
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u~x 

Sta Punctured staircase 

Fig. 3.1. Examples of the types of staircase polygons studied in this paper. The right 
panle shows the decomposition of a punctured staircase polygon into a sequence of 2-4-2 
vicious walkers, each expressible as a Gessel-Viennot determinant. 

the fusion of two three-choice polygons, with some edges deleted. Again it is 
possible to express the generating function V(x) as a sum over 4 x 4 Gessel-
Viennot determinants. This is clear from the right panel of figure 3.1. By 
arguments similar to those presented above, it follows that the generating 
function is D-finite. Again we cannot readily bound the size of the underly
ing ODE, otherwise we could use this observation to provide a proof of our 
results. However, from the counts of polygons up to half-perimeter 260, the 
underlying ODE was found experimentally from the first 206 coefficients8. 
The ODE then correctly predicted the next 54 coefficients. While the pos
sibility that the underlying ODE is not the correct one is extraordinarily 
small, that still does not constitute a proof. 

The enumeration algorithm8 is again a modified version of the algorithm 
of Conway et al.3 for the enumeration of imperfect staircase polygons. 

We identified the ODE in a manner similar to that described above for 
three-choice polygons, and the (half)-perimeter generating function V{x) 
for punctured staircase polygons was found to satisfy an ODE of order 8 

Ep«^d^F^) = 0 

k=0 

(3.1) 

with 

P8(x) = x\l - \xf{\ + 4:r)(l + 4z2)(l +x + 7x2)Q8(x), (3.2) 

where Qs{x) is a polynomial of degree 22. All polynomials are given in8. 
The singular points as given by the roots of Pg (x) and the associated critical 
exponents are listed in Table 3.1. 

Detailed analysis of the local solutions of the ODE are given in8. Near 
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Table 3.1. Critical exponents for the regular singular points 
of the Fuchsian differential equation satisfied by V(x). 

Singularity Exponents 
x = 0 - 1 , 0, 0, 0, 1, 2, 3, 8 
x = 1/4 - 1 , - 1 / 2 , - 1 / 2 , 1/2, 1, 3/2, 2, 3 
x = - 1 / 4 0, 1, 2, 3, 4, 5, 6, 13/2 
x = ± i / 2 0, 1, 2, 3, 4, 5, 6, 13/2 
l + i + 7x2 = 0 0 , 1 , 2 , 2 , 3 , 4 , 5 , 6 
1/x = 0 - 2 , - 3 / 2 , - 1 , - 1 , - 1 / 2 , 1/2, 3/2, 5/2 
Qs(x) = 0 0, 1, 2, 3, 4, 5, 6, 8 

the critical point x — xc = 1/4 the following singular behaviour was found: 

V(x) ~ A(x)(l- 4a;)"1 + B(x)(l- 4x)" 1 / 2 + C(x)(l- 4 x ) - 1 / 2 l o g ( l - 4c), 
(3.3) 

where A(x), B(x) and C(x) are analytic in a neighbourhood of xc. Note 
that the terms associated with the exponents 1/2 and 3/2 become part of 
the analytic correction to the (1 — 4a;) - 1 /2 term. Near the singularity on 
the negative x-axis, x = a;_ = —1/4 the singular behaviour 

V(x)~D{x)(l+4x)13/2, (3.4) 

was found, where again D{x) is analytic near a;_. Similar behaviour is 
expected near the pair of singularities x — ±i /2, and finally at the roots of 
1 + x + 7x2 the behaviour E(x)(l +x + 7x2)2log(l +x + 7a;2) is expected. 

The asymptotic form of the coefficients was analysed as for three-choice 
polygons. The growth constant is 4 and we considered the new series with 
coefficients r„ = p n + 8 / 4 n . Using the recurrence relations for pn (derived 
from the ODE) we generated many more terms r„. Prom equations (3.3) 
and (3.4) it follows that the asymptotic form of the coefficients is 

Any contributions from the other singularities are exponentially suppressed 
since their norm (in the scaled variable y = x/4) exceeds 1. Prom the first 
100000 terms estimates for the amplitudes were obtained by fitting r„ to 
the form given above. This led to the refined asymptotic form 

™ ^ I 0 2 4 (i+-L£ (ya=±s+(-ir ( J* , ) ) ) . 
(3.6) 
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We obtained accurate numerical estimates of many of the amplitudes 
and found that" b0 = - f $ , h = ^ , b2 = ^ ^ , c, = 

1.55210340048879105374... and d0 = -f?j,di = - 2 | $ , d2 
48 J . _ 2610 J _ 640815 

3 / 2 ) " 2 — g 7 r 3 / 2 
rf3 = - " a 6 ^ 5 / ? 6 , ^4 = ^ s " 1 . though we have been unable to iden
tify Co. These amplitudes are known to at least 100 digits accuracy. The 
excellent convergence is solid evidence (though naturally not a proof) that 
the assumptions leading to equation (3.5) are correct. 

We have also initiated an investigation of the area generating function. 
We find that the area generating function A(q) is of the form 

A(q) = {G(q) + H(q)y/T=qft)/[J0(l,l,q)2], 

where Jo(x,y,q) is as described above. Here q = j] is the first zero of 
Jo(l, l,q), and G and H are regular in the neighbourhood of q = rj. The 
coefficients thus behave asymptotically as 

an = [qn]A(q) ~ const.rfnn. 
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Quasi-exact Solvability of Dirac Equations* 

Choon-Lin Ho 

Department of Physics, Tamkang University, Tamsui 25137, Taiwan, R.O.C. 

We present a general procedure for determining quasi-exact solvability of the 
Dirac and the Pauli equation with an underlying sl(2) symmetry. This pro
cedure makes full use of the close connection between quasi-exactly solvable 
systems and supersymmetry. The Dirac-Pauli equation with spherical electric 
field is taken as an example to illustrate the procedure. 

1. In this talk we present a general procedure for 
determining quasi-exact solvability of the Dirac and the Pauli equa

tion with an underlying sl(2) symmetry. This procedure makes full use 
of the close connection between quasi-exactly solvable (QES) systems and 
supersymmetry (SUSY), or equivalently, the factorizability of the equa
tion. Based on this procedure, we have demonstrated that the Pauli and 
the Dirac equation coupled minimally with a vector potential 1, neutral 
Dirac particles in external electric fields (which are equivalent to general
ized Dirac oscillators) 2, and Dirac equation with a Lorentz scalar potential 
3 are physical examples of QES systems. 

Here we only give the main ideas of the procedures, and refer the readers 
to Refs. [1,2,3] for details. 

2. For all the cases cited above, one can reduce the corresponding multi-
component equations to a set of one-variable equations possessing one-
dimensional SUSY after separating the variables in a suitable coordinate 

"Talk presented at the XXIII International Conference on Differential Geometric Meth
ods in Theoretical Physics, Aug 20-26, 2005, Nankai, Tianjin, China. 
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system. Typically the set of equations takes the form 

{i+w{r))f- = £+u' (1) 

~ + W ( r ) ) / + = £ - / - , (2) 

where r is the basic variable, e.g. the radial coordinate, and f± are, say, 
the two components of the radial part of the Dirac wave function. The 
superpotential W is related to the external field configuration, and £± 

involve the energy and mass of the particle. We can rewrite this set of 
equations as 

A-A+f- = e/_ , (3) 

A+A~U = e/+ , (4) 

with 

A± = ±4- + W, e = £+£-. (5) 
or 

Explicitly, the above equations read 

JP.+W2TW>yjU = efT. (6) 

Here and below the prime means differentiation with respect to the basic 
variable. Eq.(6) clearly exhibits the SUSY structure of the system. The 
operators acting on f± in Eq.(6) are said to be factorizable, i.e. as products 
of A~ and A+. The ground state, with e = 0, is given by one of the following 
two sets of equations: 

A + / i O ) ( r ) = 0 , / f ( r ) = 0 ; (7) 

A-ff(r)=0 , / i O ) ( r ) = 0 , (8) 

depending on which solution is normalizable. 
One can determine the forms of the external field that admit exact 

solutions of the problem by comparing the forms of the superpotential W 
with those listed in Table (4.1) of Ref. [4]. 

Similarly, from Turbiner's classification of the sl(2) QES systems 5, one 
can determine the forms of W, and hence the forms of external fields admit
ting QES solutions based on sl(2) algebra. The main ideas of the procedures 
are outlined below. 
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3. We shall concentrate only on solution of the upper component /_ , 
which is assumed to have a normalizable zero energy state. 

Eq.(6) shows that /_ satisfies the Schrodinger equation i ?_ /_ = e/_, 
with 

F _ = A~A+ 

= - ^ + V{r)' ( 9 ) 

with 

V(r) = W(r)2 - W\r) . (10) 

We shall look for V{r) such that the system is QES. According to the theory 
of QES models, one first makes an "imaginary gauge transformation" on 
the function /_ 

/_ ( r )=0( r )e -»< r >, (11) 

where g(r) is called the gauge function. The function cf>(r) satisfies 

- ^ T + I d ' ^ 1 + [V(r) + g" - g'2} 4>{r) = ecf>(r) . (12) 

For physical systems which we are interested in, the phase factor exp(— g(r)) 
is responsible for the asymptotic behaviors of the wave function so as to 
ensure normalizability. The function <p(r) satisfies a Schrodinger equation 
with a gauge transformed Hamiltonian 

HG = ~^+ 2Wo{r)Tr + ^ ( r ) + W° ~ W^ ' (13) 

where Wo(r) = g'(r). Now if V(r) is such that the quantal system is QES, 
that means the gauge transformed Hamiltonian HQ can be written as a 
quadratic combination of the generators Ja of some Lie algebra with a finite 
dimensional representation. Within this finite dimensional Hilbert space 
the Hamiltonian HQ can be diagonalized, and therefore a finite number of 
eigenstates are solvable. For one-dimensional QES systems the most general 
Lie algebra is sl(2) . Hence if Eq.(13) is QES then it can be expressed as 

HG = ̂ 2 CabJaJh + J2 CaJa + constant > ( 1 4 ) 
where Cab, Ca are constant coefficients, and the Ja are the generators of 
the Lie algebra sl(2) given by 

J+=zi^--Nz, 
dz 
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Here the variables r and z are related by z — h{r), where h(-) is some 
(explicit or implicit) function . The value j = N/2 is called the weight of 
the differential representation of sl(2) algebra, and JV is the degree of the 
eigenfunctions <fi, which are polynomials in a (N + l)-dimensional Hilbert 
space with the basis (1, z, z2,..., zN): 

<j> = (z - zi)(z - z2) • • • (z - zN) . (16) 

The requirement in Eq.(14) fixes V(r) and WQ(T), and HQ will have an 
algebraic sector with N + 1 eigenvalues and eigenfunctions. For definiteness, 
we shall denote the potential V admitting N + 1 QES states by Vjf. From 
Eqs.(ll) and (16), the function /_ in this sector has the general form 

( " / 
f- = (z-z1)(z-z2)---(z-zN)expl-J W0(r)dr\ , (17) 

where Zi(i = 1,2,..., N) are N parameters that can be determined by plug
ging Eq.(16) into Eq.(12). The algebraic equations so obtained are called 
the Bethe ansatz equations corresponding to the QES problem 6 '1 ,2 . Now 
one can rewrite Eq.(17) as 

U=exp(-J WN(r,{Zi})dr) , (18) 

with 

WN(r, {Zi}) = Wo(r) - J2 J^y~: • (19) 

There are N + 1 possible functions WN{T, {zi}) for the N + 1 sets of eigen
functions <j>. Inserting Eq.(18) into / / - / _ = e/_, one sees that WN satisfies 
the Ricatti equation 

Wfl-W'N = VN-eN , (20) 

where e^ is the energy parameter corresponding to the eigenfunction /_ 
given in Eq.(17) for a particular set of N parameters {zi}. 

From Eqs.(9), (10) and (20) it is clear how one should proceed to deter
mine the external fields so that the Dirac equation becomes QES based on 
sl{2): one needs only to determine the superpotentials W(r) according to 
Eq.(20) from the QES potentials V(r) classified in Ref. [5]. This is easily 
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done by observing that the superpotential Wo corresponding to N = 0 is 
related to the gauge function g(r) associated with a particular class of QES 
potential V{r) by g'(r) = Wo(r). This superpotential gives the field configu
ration that allows the weight zero (j = N = 0) state, i.e. the ground state, 
to be known in that class. The more interesting task is to obtain higher 
weight states (i.e. j > 0), which will include excited states. For weight j 
(N = 2j) states, this is achieved by forming the superpotential Wjv(r, {z,}) 
according to Eq.(19). Of the N + 1 possible sets of solutions of the Bethe 
ansatz equations, the set of roots {z\,Z2, • • •, ZN} to be used in Eq.(19) is 
chosen to be the set for which the energy parameter of the corresponding 
state is the lowest. 

4. Let us illustrate the above procedure by an example. We consider the 
motion of a neutral fermion of spin-1/2 with mass m coupled non-minimally 
with an external electromagnetic field with an anomalous magnetic moment 
/Li. The relevant equation describing such particle is the Dirac-Pauli equa
tion 7. This equation is useful in describing the celebrated Aharonov-Casher 
effect 8 , and is also of some interest in quantum chromodynamics in con
nection with the problem of quark confinement9. 

We shall consider the situation in which only electric field E is present. 
In this case, the Dirac-Pauli equation Hip = Sip is described by the Hamil-
tonian 

H = a • p + ifi-y • E + (3m , (21) 

with p = — iV. We choose the Dirac matrices in the standard representation 

- d o ) - * - ( ; - : ) • <22) 

where a are the Pauli matrices. We also define ip = (x, <£>)*, where t denotes 
transpose, and both x a n d <P a r e two-component spinors. Then the Dirac-
Pauli equation becomes 

cr • (p - i/J,E)x = (£ + m)(p , 

a • (p + i/xEV = (£- m)x • (23) 

We now consider central electric field E = Err. In this case, one can 
choose a complete set of observables to be {H, J 2 , Jz, S2 = 3/4, K). Here J 
is the total angular momentum J = L + S, where L is the orbital angular 
momentum, and S = \ll is the spin operator. The operator K is defined 
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as K = /?(£ • L + 1), which commutes with both H and J. Explicitly, we 
have 

K = diag (k, — k) , 

jfc = a • L + 1 . (24) 

The common eigenstates can be written as 

here y^m. (8, <f>) are the spin harmonics satisfying 

J 2 ^ , = j(j + 1 ) 3 ^ , 

Jzy^raj = mjyjm.j > 

^yjrrij ~^yjmj ) 

. 1 3 
J - 2 ' 2 ' " " ' 

lmil <3 . 

fc = ±0' + 5) , 

(26) 

(27) 

(28) 

and 

(* " r ) ^ T O , = " ^ . (29) 

where f is the unit radial vector. Eq.(23) then reduces to 

Q j : + * + / i £ ? r ) / _ = (£ + m ) / + , (30) 

- A + £ + „ £ , . ) / + = ( £ - m ) / _ . (31) 

This shows that /_ and /+ forms a one-dimensional SUSY pairs with the 
superpotential W given by 

W = - + fiEr , (32) 
r 

and the energy parameter e = £2 — m2. 
We can now classify the forms of the electric field Er(r) which allow 

exact and quasi-exact solutions. To be specific, we consider the situation 
where k < 0 and J dr[iEr > 0, so that f_ is normalizable, and /+ = 0. 
The other situation can be discussed similarly. In this case, Eq.(32) becomes 

W = -^+fiEr. (33) 
r 

We determine the forms of Er that give exact/quasi-exact energy £ and 
the corresponding function /_ . The corresponding function /+ is obtained 
using Eq.(30). 
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5. Comparing the forms of the superpotential W in Eq.(33) with 
Table (4.1) in [4], one concludes that there are three forms of Er giving 
exact solutions of the problem : 

i) oscillator-like : fiEr(r) oc r ; 
ii) Coulomb potential-like : ^Er(r) oc constant ; 
iii) zero field-like : nEr(r) oc 1/r . 

Case (i) and (ii) had been considered in Ref. [10] and [11], and case (iii) 
in [10]. 

We mention here that the case with oscillator-like field, i.e. case (i), is 
none other than the spherical Dirac oscillator 9. 

6. The form of the superpotential W in Eq.(33) fits into three classes, 
namely, Classes VII, VIII and IX of s/(2)-based QES systems in [5]. Below 
we shall illustrate our construction of QES electric fields in Class VII QES 
systems. 

The general potential in Class VII has the form 

VN(r) = a2r6 + 2abr4 + [b2 - a (47V + 2j + 3)] r2 

+ 7 ( 7 - l ) r - 2 - 6 ( 2 7 + l ) , (34) 

where a, b and 7 are constants. The gauge function is 

5 ( r ) = - r 4 + - r 2 - 7 In r . (35) 

We must have o, 7 > 0 to ensure normalizability of the wave function. 
Eqs.(35) and (33), together with the relation Wo(r) = g'{r), give us the 
electric field E^0): 

nE^\r) =ar3 + br . (36) 

The Dirac-Pauli equation with this field configuration admits a QES 
ground state with energy £2 = m2 (e = 0) and ground state function 
/_ oc exp(—go{r)). Also, here we have 7 = \k\. 

To determine electric field configurations admitting QES potentials VN 
with higher weight, we need to obtain the Bethe ansatz equations for <f>. 
Letting z = h(r) = r2 , Eq.(12) becomes 

d2 d 
- 4 z j - g + (4az2 + 46,2-2 (27 + 1)) — - (AaNz + e) <t>(z) = 0 . (37) 

For N — 0, the value of the e is e = 0. For higher N > 0 and 4>{r) = 
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J7i=1(,z — Zi), the electric field Ej- (r) is obtained from Eq.(19): 

N 

^JV)W=^° )(r)-X:7T 
h'(r) 

r) -Zi 
(38) 

For the present case, the roots z^'s are found from the Bethe ansatz equa
tions 

2azf + 2bzi-(2j+l)-Y" — — = 0 , i = l,...,N, (39) 
fr! Zi - zi 

and e in terms of the roots Zj's is 

N 1 

C = 2(27 + l ) 2 - - (4°) 

For N = 1 the roots 2i are 

-6 ± v ^ 2 + 2a(27 + 1) 
1 2a 

(41) 

and the values of e are 

e± = 2 (ft ± V&2 + 2a(27 + 1)) . (42) 

For a > 0, the root 2f = — |zf | < 0 gives the ground state. With this root, 
one gets the superpotential 

Wi(r) =ar3 + br- „ ^ _, - - . (43) 
r + lzi I r 

From Eq.(38), the corresponding electric field is 

HEW (r) = ar3 + br- -——- . (44) 
r2 + \z1 | 

The QES potential appropriate for the problem is 

V(x) = W? - W[ , 
= Vx-t. (45) 

The one-dimensional SUSY sets the energy parameter of ground state at 
e = 0. Hence, the ground state and the excited state have energy parameter 
e = 0 and e = e+ - e~ = 4-^/62 + 2a(27 + 1), and wave function 

/_ oc e~9a{r) (r2 - zf) (46) 

and 

/_ <x e"9 o ( r ) (r2 - z\) , (47) 
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respectively. 

QES potentials and electric fields for higher degree N can be constructed 

in the same manner. 

This work was supported in part by the National Science Council of the 
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The "exotic" particle model associated with the two-parameter central exten
sion of the planar Galilei group can be used to derive the ground states of 
the Fractional Quantum Hall Effect. Similar equations arise for a semiclassical 
Bloch electron. Exotic Galilean symmetry can also be shared by Chern-Simons 
field theory of the Moyal type. 

1. Introduction 

Recent interest in non-commuting structures stems, as it often happens, 
from far remote fields. In high-energy physics, it comes from the theory 
of strings and membranes 1, or from studying galilean symmetry in the 
plane2-5 . Independently and around the same time, very similar structures 
were considered in condensed matter physics, namely for the semiclassical 
dynamics of a Bloch electron 6. Recent developments include the Anomalous 
7, the Spin 8 and the Optical 9 Hall effects. 

Below we first review the exotic point-particle model of 4, followed by 
a brief outline of the semiclassical Bloch electron. 

Our present understanding of the Fractional Quantum Hall Effect is 
based on the motion of charged vortices in a magnetic field 1 0 ' n . Such 
vortices arise as exact solutions in a field theory of matter coupled to an 
abelian gauge field A„, whose dynamics is governed by the Chern-Simons 
term 12>13. Such theories can be either relativistic or nonrelativistic. For the 
latter, boosts commute, but exotic Galilean symmetry can be found in a 
Moyal-version of Chern-Simons field-theory 5, presented in Section 4. 

* Partially supported by Nankai Institue of Mathematics, Tianjin, China. 

http://univ-tours.fr
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2. "Exotic" mechanics in the plane 

It has been known for (at least) 33 years that the planar Galilei group 
admits an "exotic" two-parameter central extension 3: unlike in D > 3 
spatial dimensions, the commutator of galilean boosts yields a new central 
charge, 

[ G I , G 2 ] = K. (2.1) 

This has long remained a sort of mathematical curiosity, though. It 
has been around 1995 that people started to inquire about the physical 
consequences of such an extended symmetry. In 2 '4, in particular, Souriau's 
"orbit method" 14 was used to construct a classical system with such an 
exotic symmetry. The latter is realized by the usual galilean generators, 
except for the boost and the angular momentum, 

3 =CijXiPj + %Pip\ 
(2.2) 

Gi = mxi — p^ + m9 eijPj. 

The resulting free model moves, however, exactly as in the standard 
case. The "exotic" structure behaves hence roughly as spin: it contributes 
to some conserved quantities, but the new terms are separately conserved. 
The new structure does not seem to lead to any new physics. 

The situation changes dramatically if the particle is coupled to a gauge 
field. The resulting equations of motion read 

m*Xi = Pi — emO EijEj, 
(2.3) 

pi = eEi + eBeij±j, 

where 8 = k/m2 is the non-commutative parameter and we have introduced 
the effective mass 

TO* = m ( l - eBB). (2.4) 

The changes, crucial for physical applications, are two-fold: Firstly, the 
relation between velocity and momentum, (3.1), contains an "anomalous" 
term so that ±i and pi are not parallel. The second novelty is the interplay 
between the exotic structure and the magnetic field, yielding the effective 
mass m* in (3.2). 

The equations (2.3) come from the Lagrangian 

(p - A ) • dx - y dt + - p x dp. (2.5) 
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When m* ^ 0, 2.3 is also a Hamiltonian system, £ = {h,£a}, with 
£ = (pijxi) and Poisson brackets 

{xi,x2} = —-0, 
m* 
771 

{xi,pj}= —Sij, (2.6) 

{Pi,P2} = —eB. 
771* 

A most remarkable property is that for vanishing effective mass m* = 0 
i.e. when the magnetic field takes the critical value 

B = & W 
then the system becomes singular. Then "Faddeev-Jackiw" (alias symplec-
tic) reduction yields an essentially two-dimensional, simple system, similar 
to "Chern-Simons mechanics" 15. The symplectic plane plays, simultane
ously, the role of both configuration and phase space. The only motions are 
those which follow a generalized Hall law; quantization of the reduced sys
tem yields the "Laughlin wave functions" 10, which are in fact the ground 
states in the Fractional Quantum Hall Effect (FQHE). 

The relations (2.6) diverge as m* —> 0, but after reduction we have 

{x1,x2} = 9. (2.8) 

3. Semiclassical Bloch electron 

Quite remarkably, around the same time and with no relation to the above 
developments, a very similar theory has arisen in solid state physics 6. 
Applying a Berry-phase argument to a Bloch electron in a lattice, a semi-
classical model can be derived. The equations of motion in the nth band 
read 

r = ^ - p x H ( p ) , (3.1) 

p = - e E - e r x B(r), (3.2) 

where r = (xl) and p = (pj) denote the electron's three-dimensional intra-
cell position and quasimomentum, respectively, e„(p) is the band energy. 
The purely momentum-dependent Q is the Berry curvature of the electronic 
Bloch states, Oj(p) = €ijidPjai(p), where aj is the Berry connection. 

Recent applications of the model, based on the anomalous velocity term 
in (3.1), include the Anomalous 7 and the Spin 8 Hall Effects. 



244 P. A. Horvdthy 

Eqns. (3.1-3.2) derive from the Lagrangian 

LBloch = (p. _ e A . ( r j ty±i _ (£n(p) _ e V ( l > ) ty + ai(p)p.t (3.3) 

and are also consistent with the Hamiltonian structure 17 '16 

{xijXJ}Bioch = - f ^ * (3.4) 
1 + eB • S2 

<"•«>""' - r S f i (3-6) 
and Hamiltonian /i = e„ — eV. 

Restricted to the plane, these equations reduce, furthermore, to the 
exotic equations (2.3) provided fi* = 65^. For en(p) = p 2 /2m and chosing 
At = —(9/2)eijPj, the semiclassical Bloch Lagrangian (3.3) becomes the 
"exotic" expression (2.5). 

The exotic galilean symmetry is lost if 6 is not constant. 

4. Non-commutative Chern-Simons theory 

Field theory coupled to an abelian gauge field A„, whose dynamics is gov
erned by the Chern-Simons (C-S) term admits exact vortex solutions 12>13. 
Such theories can be either relativistic or nonrelativistic. In the latter case 

13 

L = Lmatter + Lfield = i$Dt1p --\T>1p\2 + [1 (-CijdtAiAj + AtBJ , (4.1) 

[plus a potential U{fj})), where Du = dv — ieAv, v — t,i. Infinitesimal 
galilean boosts, implemented conventionally as 

5°ip = ib-xtp-tb-Vip, (4.2) 

6°Ai = -tb • VM, (4-3) 

5°At = -b-A-tb-VAu (4.4) 

are generated by the constants of the motion 

G° = tPi - j n |V|2 d2x, (4.5) 

Pi = fj^diil) - (dtf)ij>)cPx - | f CjkAkdiAjcfx. (4.6) 
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The galilean symmetry extends in fact into a Schrodinger symmetry 13; 
there is no sign of "exotic" galilean symmetry, however, since {G®, G^\ = 0. 
Replacing ordinary products with the Moyal star-product, 

(f*g)(xi,x2) = exp (i-(dXldV2 -dX2dVl)j f{x1,x2)g(yi,y2) x = - (4.7) 

where 6 is a real parameter, a non-commutative version of the theory can 
be constructed, though. The classical Lagrangian is formally still (4.1), but 
the covariant derivative, the field strength, and the Chern-Simons term, 

D„ip = 9M - ieA^ * ip, (4.8) 

FnV = <9MA„ - dvAil - ie(AM *Av-Av*Ali), (4.9) 

LL ( lie \ 

C-S term = | eM„CT ( A^ * dvAa - - 5 - ^ * A" * A° ) > (4-10) 

respectively, all involve the Moyal form. The variational equations read 

iDtiP+^D2Tp = 0, (4.11) 

KE{ - eeikj
l
k = 0, (4.12) 

KB + epl = 0, (4.13) 
where B = tijFij, Ei = i^o, and pl and j l denote the left density and left 
current, respectively, 

pl=tP*4>, j 1 = — (T>iP * $ - ip * (Thp)) . (4.14) 

These equations admit, just like their ordinary counterparts, exact vor
tex solutions 18. 

The modified theory is not invariant w. r. t. boosts implemented as 
above. Galilean invariance can be restored, however, by implementing 
boosts rather as 

-. 0 -, — 
Sip = ip * (ib • x) - tb • Vip = (ib • x)ip + - b x Vi/> - tb • Vip, (4.15) 

supplemented by (4.3)-(4.4). Then the generators, 

Gi=tPi- Xitp-k ip d2x, (4.16) 

do satisfy the "exotic" relation (2.1) 

[GI,G2} = K with K = -0 j\ip\d2x. (4.17) 
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We report recent works on the conformal character of mappings preserving null 
geodesies in the Robertson-Walker spacetime and in the Schwarzscild space-
time. They should relate to the coordinate transformation in radiating space-
times. We also discuss the recent progress on the complete and rigorous proof 
on the positivity of the Bondi mass, and relations between the ADM mass and 
the Bondi mass in gravitational radiation. 

1. Introduction 

Gravitational waves are wave-like solutions of the Einstein field equations 
which radiate energy. Gravitational waves are predicted by general rela
tivity. However, they are not detected yet. An indirect proof of the ex
istence of gravitational waves comes from observations of the pulsar PSR 
1913+16. This binary system rotate rapidly, therefore should emit apprecia
ble amounts of gravitational quadrupole radiation, hence lose energy and ro
tate faster. The observed relative change in period of — 2.422(±0.006)-10~12 

is in agreement with the theoretical value remarkably. 
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10231050 and the Innovation Project of Chinese Academy of Sciences. 

mailto:huang@math.uni-hamburg.de
mailto:xzhang@amss.ac.cn


The Energy-momentum and Related Topics in Gravitational Radiation 249 

The theory of gravitational radiation was studied by Bondi, van der 
Burg, Metzner and Sachs systematically 1 _ 3 . They assumed the vacuum 
spacetime (L3,1,gBondi) (possible with black holes) takes the following 
Bondi's radiating metric 

SBondi = - ( - ~e20 + r2e2~<U2cosh25 + r2e~2^W2cosh25 

+2r2UWsinh2S)du2 - 2e20dudr 

-2r2[e2'1U cosh 25 + W sinh 2<j) dudO 

-2r2 [e-21 W cosh 25 + U sinh 25) sin Odudip 

+r2 (e 2 7 cosh 25d62 + e~27 cosh 25 sin2 9dip2 

+2 sinh25 sin OdOdip) (1.1) 

where (3, 7, 5, U, V and W are functions of x° = u, x1 = r, x2 = 9, 
x3 = ijj which are smooth for r > ro > 0, u is a retarded coordinate, r 
is a luminosity distance, 8 and if) are spherical coordinates, 0 < 9 < TT, 
0 < tp < 2TT. The outgoing radiation condition implies that the following 
asymptotic behaviors hold for r sufficiently large 

7 = £kM)+o(l), (1.2) 
r V7"3 / 

s = d(u,9,ip) 

AT V v 
c2 + 2ccot6 + d*csc6 . / 1 \ ,. _. 

0{r3)> (L5-> 
di + 2dcot9 — c 3 esc 9 ^ 

W = — : ^ • \-0 

V=-r + 2M(u,6,ip) + 0(-Y (1.7) 

(We denote /,« = -^ for i = 0,1,2,3 throughout the paper.) The following 
conditions are assumed: 

Condition A: Each of the six functions /?, 7, 5, U, V, W together with 
its derivatives up to the second orders are equal at ip = 0 and 2ir. 

Condition B: For all u, 
/•2TT C-ITK 

\ c(u,0,ip)dip = 0, / c(u, rc, ip)dip = 0. 
Jo Jo 
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Furthermore, the physics requires that the retarded time u = constant 
is a null hypersurface, and this is the cases in the Minkowski spacetime 
(where u = t — r) and in the Schwarzschild spacetime (where u = t — r — 
2 m l n | r - 2 m | ) . 

2. Mappings preserving null geodesies 

In general relativity, it is important to study the (not necessary smooth) 
coordinate transformation in order to remove the coordinate singularity. 
Therefore it is natural to study the mappings between spacetimes which 
preserve null geodesies in the theory of gravitation radiation. The first re
sult was due to Brinkmann 4 and subsequently rediscovered by several 
authors (e.g.,5) that a vacuum field can be mapped conformally on another 
vacuum field if and only if both admit a covariant constant vector. Such a 
vacuum spacetime is called the plane-fronted gravitational waves with par
allel rays (i.e.,pp-waves) and covariant constant null vector field is called 
parallel ray. The related work refers to the Alexandrov theorem. When Ein
stein developed his special relativity, he studied the affine transformations 
between two inertial frames preserving light speed and proved that they 
are Lorentzian transformations up to a dilatation. Motivated by the un
derstanding the Einstein's assumption of linearity is superfluous, in 1950, 
Alexandrov proved that any bijective transformation / of n-dimensional 
Minkowski spacetime (n > 3) to itself which preserves the distance zero in 
both directions must be a conformal mapping. That is, / is of the form 

f(x)=X*xL + t 

where L is a Lorentz matrix, A* £ R \ {0} is a scalar and t £ Rn is a vector. 
Therefore, distance zero preserving mappings must be affine. It should be 
emphasized that no regularity conditions such as affinity, differentiability, 
or even continuity are needed in Alexandrov's theorem. Along this line, in 
1982, Lester 6 '7 found that if there exists a conformal diffeomorphism from 
the Robertson-Walker spacetime to a domain of Minkowski spacetime, then 
any injective mapping of a Robertson-Walker spacetime to itself preserving 
pair of points jointed by null geodesies in both directions must be conformal. 
In general, the analogue of the Alexandrov theorem in general relativity 
does not always hold and the Einstein's cylinder universe A43'1 = § 3 x R 
provides a counterexample. When two maximal null geodesic lines meet in 
a point (x, t) E Ai3'1, then they will also meet in any point ((—l)kx, t + kir), 
k € Z. So a bijection which takes (images of) maximal null geodesic lines 
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to the (images of) maximal null geodesic lines need not be continuous, and, 
therefore, need not to be conformal. 

In 1999, the first author 8 proved the Alexandrov type theorem for the 
Schwarzschild spacetime - the most fundamental curved spacetime which is 
not conformal to Minkowski spacetime: Let / be a bijective mapping from 
Schwarzschild spacetime to itself such that / and / - 1 preserve inextendible 
null geodesic curves (as point sets). Then / is an isometry. The first au
thor 9 also studied the strongly causal spacetimes including the Minkowski 
spacetime, the Schwartzschild spacetime, the Einstein cylinder universe, the 
de-Sitter spacetime, and proved that if a bijection / of a strongly causal 
space-time M. satisfies the condition: For any null geodesic curve 7 € M., 
7(7) and / - 1 ( 7 ) are null geodesic curves, then / is a conformal transfor
mation. This theorem essentially removes the "homeomorphy" condition in 
Hawking's theorem 10. 

From the point of view of gravitational radiation, if the Alexandrov 
type theorem holds in a spacetime, then the spacetime will be too "rigid" 
to radiating coordinate transformation. Therefore, as it is well-known that 
no gravitational radiation occurs in the Schwarzschild spacetime, it will 
be interesting to study the Alexandrov type theorem for general radiating 
spacetimes. 

3. The A D M mass at spatial infinity 

At spatial infinity of an asymptotically flat spacetime, Arnowitt, Deser and 
Misner defined the total energy-momentum as follows: Let (M3,gij,hij) 
be an asymptotically flat spacelike hypersurface that, outside a compact 
subset, M is diffeomorphic to R3 minus a ball with the metric g and the 
symmetric 2-tensor h satisfying the following asymptotic conditions 

9i, = Sij + O ( - ) , dkgij = O ( ^ ) , dkdigij = O ( ^ ) , 

hij=°(^)^ dkhij = 0(^) 

The ADM total energy E and the ADM total linear momentum Pfc are 

E = — - l i m / (djgij -digjj)*dx\ 
lbir r—00 j S r 

Pfe = — lim / (hki - gkihjj) * dx\ 
SIT r->oo j s 
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where Sr is the sphere of radius r in R3. 

In 1979, Schoen-Yau n proved that if a spacetime satisfies the domi
nant energy condition, i.e., for any timelike vector W, TUVWUWV > 0, and 
TUVWU is a non-spacelike vector, then, for asymptotically flat initial data 
set {M3,gij,hij), 

That E = 0 implies that the spacetime is flat over M. This solved the 
long-term positive mass conjecture in general relativity. In 1981, Witten 
12 found a new proof by using spinors and the Dirac operator. In 1999 13, 
the second author generalized the positive mass theorem to the spacetimes 
including the total angular momentum. 

4. The Bondi mass at null infinity 

Now let us go back to the Bondi's radiating vacuum spacetime. The null 
hypersurface {u = uo} gives null infinity as r —-> oo where the Bondi energy-
momentum is defined as 1 - 3 : 

m„(u0) = T - / M(u0,9,ip)nudS 
47T JS2 

for v = 0,1,2,3, where n° = 1, n1 = sm9cosijj, n2 = sinOsmtp, n3 = cos#. 
The Bondi energy-momentum is the total energy-momentum measured af
ter the loss due to the gravitational radiation up to that time. In the paper, 
Bondi proved that the Bondi mass is non-increasing w.r.t. u, i.e., more and 
more energy is radiated away. 

Most physical systems cannot radiate away more energy than they have 
initially. This is usually a trivial consequence of a conserved stress-energy 
tensor with a positive timelike component. However, the gravitational field 
does not have a well-defined stress-energy tensor. It is possible that a finite 
gravitational system might be able to radiate arbitrarily large amounts of 
energy. That it is impossible is known as the positive mass conjecture at 
null infinity. There is no mathematical setting available of this conjecture in 
general spacetimes. In Bondi's radiating vacuum spacetimes, the conjecture 
says that the Bondi mass must be nonnegative. 

The outlines of the proof that the Bondi mass is nonnegative were given 
by Schoen-Yau14 by solving the Jang's equation and physicists (Israel-
Nester, Horowitz-Perry, Ashtekar-Horowitz, Ludvigsen-Vickers, Renla-Tod, 
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etc.15) by using Witten's spinor argument. However, no mathematical detail 
was provided in any those proofs. The idea is to choose certain spacelike hy-
persurfaces approaching to null infinity. These spacelike hypersurfaces are 
asymptotically hyperbolic with the nontrivial second fundamental forms 
in the Bondi's radiating spacetimes. Therefore, it requires to establish the 
positive mass theorem for these spacelike hypersurfaces. In 2002, by using 
Witten's method, the second author was able to find a complete and rigor
ous proof of this positive mass theorem near null infinity 16>17. Recently, to
gether with Yau, the authors were able to find suitable asymptotically null, 
spacelike hypersurface in vacuum Bondi's radiating spacetimes. Then the 
positive mass theorem in 16 '17 indicates that if there exists uo in Bondi's ra
diating vacuum spacetimes such that c| _ = ^ | = = 0 f o r r sufficiently 
large, then 

y 1=1,2,3 

for all u < UQ
 18. 

We are still working on Schoen-Yau's method whether the above condi
tions can be removed, i.e., whether the Bondi mass is always nonnegative. 

5. The A D M energy-momentum and the Bondi 
energy-momentum 

Finally, we would like to discuss one of the main problems in gravitational 
radiation on the relation between the total energy-momentum at spatial 
infinity and that at null infinity. 

In 1979, assuming that the spacetime can be conformally compactified, 
and asymptotically empty and flat at null and spatial infinity in certain 
sense, Ashtekar and Magnon-Ashtekar 19 demonstrated the mass at spa
tial infinity is the past limit of the Bondi mass. Here, the "past limit" 
means l imu__0 0mi /(u). (In 2003, Hayward 20 proved this theorem in a 
new framework for spacetime asymptotics, replacing the Penrose conformal 
factor by a product of advanced and retarded conformal factors.) In 1993, 
Christodoulou and Klainerman 21 proved the global existence of globally 
hyperbolic, strongly asymptotically flat, maximal foliated vacuum solutions 
of the Einstein field equations. They also proved rigorously the ADM mass 
at spatial infinity is the past limit of the Bondi mass in these spacetimes. 

In 2004, the second author 22 studied this problem in the Bondi's radi
ating vacuum spacetime. He defined the spatial infinity as the ^-slices where 
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the "real" time t is denned as t = u + r. Denote E(t0) by Po(io). Then he 
verified that 

P„(*o) = m„(-oo) 

for v = 0,1,2,3 under the asymptotic flatness assumptions at spatial infin
ity which ensure the Schoen-Yau's positive mass theorem. In this case, the 
ADM total energy, the ADM total linear momentum of (spatial) to-slice 
and the Bondi energy-momentum of (null) uo-slice satisfy 

P„(«o) = m„(u0) + ~ J ° / ((c,o)2 + (d,o)2)n"dSdu 

In particular, if there is news c$, dp, then the ADM total energy is always 
greater than the Bondi mass. 

Unfortunately, the asymptotic flatness conditions at spatial infinity in all 
above works preclude gravitational radiation. The second author therefore 
assumes certain weaker asymptotic flatness conditions at spatial infinity in 
order to include gravitational radiation: Roughly speaking, we assume that, 
as u —> - c o , {M, C, d, M,0,cto,dfi,M,A,c,A,dtA} = 0(l) where A,B = 2,3. 
Under these conditions the ADM total energy of any to-slice and the past 
limit of the Bondi mass satisfy: 

E(*o) = mo(-oo) + — lim / (c2+d2)ndS. 
4-7T u^-ooJS2

 v 7 ' u 

This formula indicates that, in radiative fields, infinite energy is needed for 
any io-slice goes to a wo-slice. Very recently, the authors were able to find 
the relations between the ADM linear momentum of any io-slice and the 
past limit of the Bondi momentum: 

1 /»7r p2ir 

Fk(t0) = mk(-oo) + — lim / / Vkd^dO 
°7T u->-oo JQ JQ 

for k = 1,2,3, where Vk have long expressions and are given in the appendix 
of 23. In particular, in axi-symmetric spacetimes where c = c(u, 8), d = 01, 

Pi(*o) = mi( -oo) , P2(*o) = m 2 ( -oo) . 

However, one cannot expect the "real" time t = u + r in general (e.g., the 
Schwarzschild spacetime). That the case t approaches u + r asymptotically 
is studying by the authors 24. 
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Introduction 

Covariant Quantum Mechanics is a formulation of quantum mechanics on 
a curved spacetime with absolute time, which is manifestly independent of 
coordinates and accelerated observers1'2. One of the main aspects of this 
theory deals with the covariant achievement of the Schrodinger equation3. 
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Another complementary aspect deals with the achievement of quantum 
operators: in this paper, we sketch the most recent approach to this second 
topic. 

The idea is the following. A covariant family of 1st order quantum op
erators can be obtained through the Lie derivatives of a covariant family 
of distinguished vector fields of the quantum bundle. A natural canditate 
for this family consists of the Hermitian vector fields. So, we classify these 
vector fields and see that they constitute a Lie algebra naturally isomorphic 
to a distinguished Lie algebra of "special functions" of the classical phase 
space (in general, the special bracket does not coincide with the Poisson 
bracket). We assume this result as the correspondence principle of Covari
ant Quantum Mechanics. We stress that every classical observable and the 
corresponding quantum operator depend on an observer. But the families 
of the classical observables and of the associated quantum operators, re
spectively, as a whole, and the correspondence principle are covariant. This 
approach allows us to treat position, momentum and energy observables on 
the same footing. Indeed, we have no ordering problems concerning energy, 
because it is not deduced from momentum. On the other hand, the quan
tum operator arising for energy is a 1st order operator. But, combining this 
operator with the 2nd order Schrodinger operator (which is achieved inde
pendently of the energy viewpoint) yields the physically correct quantum 
operator on the Hilbert bundle. However, this last development is beyond 
the scope of the present paper, for reasons of space2. 

It is wellknown that quantum mechanics cannot be formulated in an 
Einstein framework. On the other hand, we show that the above results con
cerning the covariant formulation of pre-quantum operators in the Galilei 
framework can be successfully repeated in the Einstein framework with 
some necessary changes. This fact seems to be interesting by itself and to 
be useful for a deeper understanding of the Galilei case. For this reason, we 
discuss also the Einstein case in the present paper. 

If M and N are manifolds, then the sheaf of local smooth maps M —> 
N is denoted by map(M, N). If F —> B is a fibred manifold, then the 
sheaf of local sections B —» F is denoted by sec(B, F) and the vertical 
restriction of forms is be denoted by v . 

We assume the following basic spaces of scales: the space of time in
tervals T, the space of lengths L, the space of masses M. We assume the 
following "universal scales": the Planck's constant S g T _ 1 ® L 2 ® M and 
the speed of light c £ T _ 1 ®L. Moreover, we will consider a particle of mass 
m G M and charge q e T - 1 <g> L3/2 <g> M1/2 . 
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1. Hermitian vector fields 

We start by analysing the Lie algebra of Hermitian vector fields of a Hermi
tian line bundle over a generic base manifold. Thus, we consider a manifold 
E, which will be specified in the next sections. We denote the charts of E 
by (xx) and the associated local bases of vector fields of TE and forms of 
T*E by d\ and dx , respectively. 

We consider a complex line bundle n : Q —> E equipped with a scaled 
Hermitian product Uh : E -> ( L - 3 <g> C) ® (Q* <g> Q*). 

We shall refer to a normalised quantum basis Ub e sec(I£, L3/2<g>Q). For 
each $, * e sec(E, Q), we write * = ipUb, with ip € m&p(E, L~ 3 / 2 ® C) , 
and E/ i ($ ,*) = (f>ip. 

Let I : Q —> VQ : q \—> (q, q) be the Liouville vector field. 
A Hermitian connection c of the quantum bundle can be locally written 

as c = x[Ub] + \A[Ub] <g> I , with A[Ub] e sec(.E, T*E). The curvature of c 
is R[c] = - i$[c] ® 1, where $[c] = 2 cL4[t/&]. 

Each quantum basis Ub yields (locally) the flat connection x[Ub] : Q —> 
T*£ <g> T Q , with expression x[^&] = rfA <8> 9A • 

A vector field F G sec(Q, TQ) is said to be Hermitian if it is projectable 
over an X G sec(E,TE), is jR-linear over X and Z,[X](C/7i($, $)) = 
Uh(Y.V, $) + J7ft(*, y.$) , for each * , $ e sec(E,Q). The Hermitian 
vector fields are locally characterised by an expression of the type Y = 
Xxd\ + i YI, with Xx, Y £ ma,p(E, M). 

The Hermitian vector fields constitute a subsheaf her (Q, TQ) C 
sec(Q,TQ), which is closed with respect to the Lie bracket. 

In order to classify the Hermitian vector fields globally, we con
sider a Hermitian connection c and obtain the linear isomorphism j[c] : 
sec(E,TE) x map(£, M) -* he r (Q.TQ) , with expression )[c](X,Y) = 
Xxdx + x(AxX

x + Y)®I. 

If $ is a closed 2-form of E, then we have the Lie bracket of 
sec(.E, TE) x map(.E, M) 

[ (Xx . f i ) , (X 2 ,F 2 ) ] 4 ) =: ( [X 1 ,X 2 ] , $(X1,X2)+X1.Y2-X2.Y1) 

Now, let us refer to the 2-form $[c] associated with the curvature of c. 

Theorem 1.1. The map j[c] is a Lie algebra isomorphisms. • 

In the next sections we equip the base manifold E with a geometric 
structure describing the Galilei, or Einstein spacetime, and obtain a dis
tinguished choice for the Hermitian connection c and a classification of the 
Hermitian vector fields via the Lie algebra of special phase functions. 

http://Xx.fi
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2. Galilei case 

2.1. Classical setting 

We consider the absolute time, consisting of an affine 1-dimensional space 
T associated with the vector space T =: T ® 1R and assume spacetime E 
to be oriented and equipped with a time fibring t : E —-> T . A motion is 
defined to be a section s :T —> E. 

We shall refer to a time unit UQ € T, or, equivalently, to its dual u° G 
T*, and to a spacetime chart (xx) = (x0,^*) adapted to the orientation, 
the fibring, the affine structure of T and the time unit UQ • Greek indices 
will span all spacetime coordinates and Latin indices the fibre coordinates. 
We have the scaled form dt: E —> T <g> T*.E, with expression dt = UQ <g> d° . 

We assume as metric a scaled spacelike Riemannian metric g : E —> 
L2 <g> (V*E <g) V*E). With reference to a mass m € M, it is convenient 
to introduce the rescaled metric G =: ^ g : E —> T <g> (V*E ® V*E), with 
expression G — G°, wo ® dz ® d? . 

We assume as gravitational field a torsion free linear spacetime connec
tion K* : TE -* T*E <g> TTE, which fulfills the identities V^dt = 0, 
V^g = 0, R^xifij — R^fij\i • We observe that K^ is determined by dt and g 
up to a local closed 2-form. 

We assume as electromagnetic field a closed scaled 2-form F : E —> 
(L :/2 (g, M 1 / 2 ) ® A2T*.E. 

With reference to a particle with mass m and charge q, we obtain 
the joined connection K =: K^ + Ke = K* - •£-(dt ® F + F ® dt), with 
F = g^2(F), which fulfills the same identities of the gravitational connec
tion. Thus, from now on, we shall refer to this joined connection, which 
incoroporates both the gravitational and the electromagnetic fields. 

We assume as classical phase space the 1st jet space J\E of motions 
s £ sec(T,E). A space time chart (xx) induces a chart (XX,XQ) on J\E. 
We have the contact map A • J\E —> T* ® TE and the complementary 
contact map 8=: 1 — p, o dt : J\E —+ T*E <g> VE, with expressions A = 
u° <8> (d0 + x0 di) and 6 = (dl - xl

Q dP) <g> di. Moreover, we have a linear 
isomorphism v : V0 J\E —> T* ® V£?. 

An observer is defined to be a section o G sec(£?, J\E). Each observer o 
yields the affine fibred isomorphism V[o] =: id — o : J\E —> T*®K£! and the 
linear fibred projection i/[o] : TE —> V£!. For each observer o, we define the 
kinetic energy and the kinetic momentum as K,[o] = | G(V[o], V[o]) and 
Q[o\ = i/[o]j(Gb(V[o])) , with expressions K\o] = \ Ga

tj x0 x3
0 d° and Q[o] = 

Gy XQ dJ . We define the kinetic Poincare-Cartan form 0[o] =: —/C[o] + Q[o] 
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and obtain K[o\ = — A[O]JG[O] and Q[o] = 6[O]JQ[O] . 
We have a natural bijective map x between time preserving linear space-

time connections K and affine phase connections V : J\E —> T*E§§TJ\E, 
with expression V = dx®{dx + Yxi 9°) , where Txh = Tx$ + rA^°- xJ

0 , with 

Fxhl = * * V • 
Then, K yields the phase connection, T =: x{K) : J\E -» T*E®TJ\E, 

which splits as T = I^ + T e , where Tc = -JiJS ^ T* ® (T*£ <g> VE) and 
r* = x ( K l ) . We have P = +(Fjh 4 + 2 F0?l) d°) ® 9? . 

Hence, T yields the dynamical phase connection, 7 =: .zur : J\E ->T*® 
TJxJB, with expression 7 = u0®(d0+:4 <9i+7o£ 9?), with 70j, = Kx\ 5§ S% , 
where SQ =: 5$ + 5% XQ . Indeed, 7 splits as 7 = 71* + 7 e , where 7* = R ^ 
and 7e = - £ A J F : J ^ - • (T* (8) T*) <g> V.E . 

Moreover, T and G yield the phase 2-form, ft =: GJ(V[T] A 0) : JXE —> 
A2T*JiE , with expression ft = G -̂ ( 4 - rA j , dA) A (d> - x3

0 d°). Indeed, ft 
splits as ft = ft* + ftc, where ft1" = Gj^ r 1 " ] A 0) and fte = ft F . 

The pair (dt, ft) is cosymplectic, i.e. dft = 0 and d i A f t A f t A f t ^ 0. 
ft admits horizontal potentials A^ , which are defined up to a spacetime 

1-form. For each o, we can write A^ = 0[o] + A[o), where A[o] = o*A^, 
and obtain the closed spacetime 2-form $[0] =: 2 o*ft = 2 cL4[o]. 

T and G yield the phase 2-vector A=:GJ(T A v) : JXE -> A2VJi.E, 
with expression A = GQJ (di+T^ d£) A9? . Indeed, A splits as A = A* + Ac, 
where A" = GJQ?" A v) and Ae = ft G*(F) : J±E -> (T* ® T*) ® A 2 V £ . 
We have the expression Ae = ft Gf GJ

0
k Fhk df A 0? . 

/ € map(JiE, R) is said to be a special phase function if D2f = 
f" ® G, with / " G map(JE, T) . These functions constitute a subsheaf 
spec(JiE, R) C map(Ji.E, R). 

f G spec^E, R) if and only if / = f° \ G°tj a; j 4 + /* G% x{ + f , with 

/ o . ^ / G m a p ^ B ) . 
For each / £ spec{J\E, R), the map f"jA-G*(Df) factorises through 

a spacetime vector field, X[f] € sec(.E, TE), with expression X[f] = 
fdo-fdi. 

For each observer o, we have the linear isomorphism 

s[o] : spec(JiE, R) -> sec(23, TE) x map(23, R) : f ^ (X[f], f o o) . 

We define the special Lie bracket of spec{J\E, R) by 

[ / 1 , / 2 ]= :A(d / 1 , d / 2 ) + 7 ( / n - / 2 - 7 ( / 2 ' ) - / i -

Indeed, for each observer o, we obtain 

I/i,/2] = -[*[/i], xte]]-^] + [(xif&h), (x[f2],f2)} 
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and s[o] turns out to be an isomorphism of Lie algebras. 
For example, let us consider a potential A^ and an observer o. 

Then, we define the observed Hamiltonian and momentum to be, respec
tively, H\o] =: — A[O]J^4T and V[o] =: I/[O]JJ4T , with expressions TC[o] = 
( i G% x0 xJ

0-A0) dP and V[o] = {G% x3
0+Ai) di where A\ =: G% A,. Indeed, 

xx , Ho , Vi £ spec(JiE, M). Moreover, we have X[xA] = 0, X[H0] = d0 , 
X[Pi] = -di and [ * \ ^ ] = 0, \x\Ho] = - # , \x\Vi\ = 5X , 
ln0,Pil = 0 , IVuVj] = 0 . 

2.2. Quantum setting 

We assume the line bundle IT : Q —> E as quantum bundle over the Galilei 
spacetime and define the phase quantum bundle as 7T : Q T = : JIEXEQ-> 

JIE. 

We suppose that the cohomolgy class of Cl be integer and assume a 
connection HT : QT -> T* JiJS ® TQT , which is Hermitian, "universal"3 

and whose curvature is given by#[HT ] = - 2 i £ 2 ® l T . 
With reference to a basis Ub and an observer o, the expression of HT 

is of the type HT = xT[E6] + i (G[o] + A[C/6, o]) <g> IT , where A[f/6, o] is a 
potential of $[o] selected by ^ and t/6. Hence, we have ^ = dx ® d\ + 
d0 ® a? + i ((-1 G?. 4 4 + A>) d° + {G% 4 + A{) d*) ® IT . 

For each observer o, the expression of H[o] =:o*HT is ^[o] = x\Ub) + 
i A[C/6, o] ® I , i.e. M[o] = dA <g> 9A + i A\ dx ® I. If Ub is a quantum basis and 
o,6 = o + v are two observers, then we obtain the transition law A[Ub,6] = 
A[Ub, o] - \ G{v, v) + V[O\JG\V) . 

Eventually, we apply to the Galilei framework the classification of Her
mitian vector fields achieved in Theorem 1.1. For this purpose, we choose 
any observed quantum connection ^[o] as auxiliary connection c and use 
the observed representation s[o]. 

Theorem 2 .1 . We have the Lie algebra isomorphism 

3r=/j["q[o]] os[o] : spec{JxE, M) -+ her(Q, TQ), 

with expression # ( / ) = f°do~ fldi+i(/° A0~ fl Ai + f)®l, which turns 
out to be observer independent. • 

For instance, we have $(xx) = ixx I , S(W0[o]) = So , SC^ib]) = - 9 , . 

file:///x/Ho
file:///x/Vi/
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3. Einste in case 

3.1. Classical setting 

We assume spacetime to be an oriented and time oriented 4-dimensional 
manifold E equipped with a scaled Lorentzian metric g : E —> L2 <g) (T*E® 
T*E) with signature (—I- + + ) . With reference to a mass m £ M, it is 
convenient to introduce the rescaled metric G=: ^ g : E —+T(g> (T*E (g) 
T*E). A motion is denned to be a 1-dimensional timelike submanifold 
s:T C E. 

We shall refer to a spacetime chart (xx) = (x°,xl) adapted to the 
spacetime orientation and such that the vector do is timelike and time 
oriented and the vectors d\,d2, dz are spacelike. Greek indices will span all 
spacetime coordinates and Latin indices will span the spacelike coordinates. 
We shall also refer to a time unit u o £ T and its dual u° S T*. We have 
the expression G = G°Xfi u$ ® dx ® d^ . 

We assume as gravitational connection the Levi-Civita connection K^ : 
TE^>T*E® TTE induced by G. 

We assume as electromagnetic field a closed scaled 2-form F : E —+ 
(L1/2 (g )M

1/2)g )A
2T*£;. 

In the Einstein framework there is no way to merge the electromagnetic 
field into the gravitational connection, hence we have no joined spacetime 
connection. 

We assume as phase space the subspace of 1st jets of motions J\E c 
Ji(E,l). 

Each spacetime chart (x°, x%) induces a fibred chart ( i 0 , xl,x0) of J\E. 
It is convenient to set gox =• g(b0, d\) = g0\ + gi\ xl

Q , Sx =: 8$ + Sf x0 , 

We have the contact map a : J\E —> T* <g> TE, with expression A = 

Co a 0 u° <g> (do + x0 di), where a 0 =: l/yj\g00 + 2 g0j x3
0 + gij x0xl\. 

We define the time form as the map r =: — \ ^(A) '• J\E —> T®T*E, 
with expression r = T\dx , where T\ = - ^ g0\ UQ . We have T(A) = 1 and 
g (A, A) = - c 2 . 

We have the complementary contact map 8 =: 1 — A<E>T : J\EXETE —» 
TE, with expression 9 = dx <g> d\ + (a0)2 g0\ dx <g> (d0 + x{ dj). 

We define the 1-form 6 =: — m^- r , with expression 0 = a0 CQ G ° A dx . 
We have an isomorphism vT : T* <g> VTE —> VQJ\E , where VTE is the 

subbundle of J\E XE TE consisting of vector fields killed by r . 
An observer is defined to be a section o e sec(E, J\E). An observing 
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frame is defined to be a pair (o, £), where o is an observer and £ £ sec(E, T® 
T*E) is timelike and positively time oriented. In particular, each observer 
o determines the observing frame (o, O*T) . An observing frame is said to be 
integrable if £ is closed. In this case, there exists locally a scaled function 
t € map(.E, T) , called the observed time function, such that C, = dt. For 
each observing frame (o, Q , by splitting O into the horizontal and vertical 
components, we define the observed kinetic energy and kinetic momentum 
as £[o,C] = - ( 1 / ? ) C U [ O ] J 0 ) and Q[o,Q = 0 [O,C]JG.

 T h u s > w e h a v e © = 
—K,{o, C] + Q[o, C] • For an integrable observing frame we obtain JC[o] = 
-co a0 Gg0 d° and Q[o] = c0 a

0 G°0i di. 
We have a natural injective map \ between linear spacetime connections 

K and phase connections r : J\E —> T*E ® TJ\E, with expression T = 
dx ® (3A + TAo 9°) , where TAo = S*, ifA% 5g . 

K* yields the connection T* =: x(K*) : J\E -> T*.E ® T J i . E . 
T" yields the 2nd order connection ^ =: jsJS^ : JXE -> T*<g>TJi.E, with 

expression 7" = c0 a
0 u ° ® ( d 0 + 4 0i+7ho j 9?), where 7 ^ = S* tfA% 5X 5g . 

r" and G yield the 2-form fil'=:Gj((i/-1 o v[T*]) A 0) : JXE -> 
A2T*JxE, with expression ft" = Co a 0 <3?M ( 4 - cSj, # "A% Sg) dA) A d" . 

The pair (G, ft") is "contact", i.e. ft = dG and G A ft" A ft" A ft" ^ 0 . 
r" and G yield the vertical 2-vector A"=:Gj(r" A vT) : Ji-E -> 

A2VJXE, with expression A" = ^ G0
A (9A + ^ tf "A% £g 9°) A 8° . 

Now, we are looking for joined phase objects, obtained by merging the 
electromagnetic field into the above gravitational phase objects, in such a 
way to preserve the above relations. 

We define the connection r =: T" + T c , where Tc =: o (F + 2T A (AJF)) , 
i.e., in coordinates, r e = (FXfl - {a°)2g0X FPVL Jg) dx <g> df . 

T yields the 2nd order connection 7 =: AJT : JxE -> T* ® TJXE, which 
splits as 7 = 7b + 7C , where 7 ' = - ^ T ° G ' 0 (AJ-F) , i.e., in coordinates, 

7 e HiV + ^ 4 K ® 3 ° . 
r an G yield the 2-form ft =: G_I(I/T[T] A0) , which splits as ft = ft" + fte, 

where ftc = ^F, i.e., in coordinates, fte = ^F\fld
x A cP. The pair 

(0 , ft) is "cosymplectic" i.e, dft = dft" + ^ dF = 0 and G A ft A ft A ft = 
G A ft" A ft" A ft" •$. 0 . 

ft admits horizontal potentials A^, which are defined up to a spacetime 
1-form. Indeed, we have A* = G + % A(, with expression AT = (CQ a° GQA + 
lA\)d\ 

Indeed, 7 is the unique 2nd order connection such that i(j)T = 1 and 
i(7)O = 0. 

T and G yield the 2-vector A = : G j ( r A v*), which splits as A = 
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A11 + A e , where Ae = ^ {vT A vT)(G*{0*{F))), i.e., in coordinates, Ae = 

f G map(i7i£, M) is said to be a special phase function if / = 
-G(A,X) + / , with X G sec(.E, TE) and / G map(.E, jR), i.e., in co
ordinates, 

/ = -co a0 (G% + G°M 4 ) fX + f = -co a 0 (/0° + / ° 4 ) + / , 

with fx=:Xx and / ° =: G°M X^ . These functions constitute a subsheaf 
spec(JiE, JR) C map(J1£;, iR). Thus, we have the linear maps X : 
speciJxE, M) -> sec(.E, TE) : f i-> X[f] and " : spec(JiE, M) -> 
map(.E, R):fy-*f. 

We have the linear isomorphism 

s : spec{JiE, M) -> sec(£, T.E) x map(£, M) : f ^ (X[f], f) . 

We define the special Lie bracket of spec{J\E, M) by 

I / i , / 2 J =:K{dfudf2) + (r(X[/!]) (7 ./2) - (r(X[/2]) (7./1) • 

Indeed, we obtain 

[ /1 , M = X [ / i ] . / 2 - X [ / 2 ] . / i + f F(X[/ i ] ,X[/ 2 ] ) 

and s turns out to be an isomorphism of Lie algebras. 
For any spacetime chart (xx), the functions xx are special phase func

tions and we obtain X[:rA] = 0. Moreover, with reference to a potential 
A^ and to an observing frame (o, Q, we define the observed Hamiltonian 
and momentum as Ti\o, £] =: — (1/c;) (M[O}JA^)C, and V[o] =-6[o, £] A*. If 
the observing frame is integrable, then we have the expressions Ti\o, Q = 
( -c 0 a0 G°00 - % Ae

0) d° and V[o, C] = (c0 a
0 G°0i + \ A\) di. In this case, 

Ho and Vi are special phase functions and we obtain X[Wo] = <9o and 
X[Pi) =-dt. 

We have [a;A,a;M] = 0 and, with reference to an integrable observing 

frame, [ x \ W „ ] = Sx, [ z \ n ] = ^A, [Wo.Pil = 0 . 

3.2. Quantum setting 

We assume the line bundle 7r : Q —> E as quantum bundle over the 
Einstein spacetime. Moreover, we define the phase quantum bundle as 
TTT : Q T = : J i £ x B Q - > J i £ . 

We can refrase the notion of Hermitian systems of connections and as
sociated universal connection that we have discussed in the Galilei case, by 
replacing J\E with J\E. 
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We suppose that the cohomology class of | F be integer and assume a 
connection HT : QT —> T*J\E ® T Q T , which is Hermitian, "universal"3 

and whose curvature is given 
We have the splitting HT = HTe + i G ® I T , where MTe : QT -> T*JXE® 

T Q T , is the pull back of a Hermitian connection He : Q —> T*E ® TQ, 
whose curvature is given by the equality i?[Hc] = —i § F ® I . 

With reference to a basis Ub, the expression of *i' is of the type ^ = 
XT[f7&] + i ( 9 + | A([Ub}) ® IT , where A^Ub] is a potential of F selected 
by MT and Ub. Hence, in a chart adapted to Ub, we have *V = dx ® d\ + 
4 ® a ? + i(coa°(5gA + a Ae

A)o!A®lT. 
For each o, the expression of ^ [o ] , is H[o] = i 6[o] <g> I + Me , and, in a 

chart adapted to Ub, H[o] = dx <g> d\ + i (0[o]A + f Ae
A) dx ® I . 

Eventually, we apply to the Einstein framework the classification of 
Hermitian vector fields achieved in Theorem 1.1. For this purpose, we choose 
the electromagnetic quantum connection H8 as auxiliary connection c and 
use the classification of special phase functions. 

Theorem 3.1. We have the Lie algebra isomorphism 

S=:j[Mc] os : spec{JiE, M) -> her (Q, TQ), 

with coordinate expression 3(f) = fxd\ + i ( | fx Ae\ + / ) I . • 

The above result could also be obtained via observers in analogy with 
the Galilei case. 

Hence, the Hermitian vector field associated with / by the connection 
H[o] does not depend on the observer o. For instance, we have $(xx) = iz* I 
and, with reference to an integrable observing frame and to an adapted 
chart, $(Tlo) — do and $(Vi) = - c \ . 
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After reviewing briefly the classical examples of duality in four dimensional 
field theory we present a generalisation to arbitrary dimensions and to p-form 
fields. Then we explain how U-duality may become part of a larger non abelian 
V-symmetry in superstring/supergravity theories. And finally we discuss two 
new results for 4d gravity theory with a cosmological constant: a new exact 
gravitational instanton equation and a surprizing linearized classical duality 
around de Sitter space. 

1. Electric-magnetic duality and self-duality 

1.1. Gauge fields 

The discrete (Z4) and continuous (SO(2,R)) invariances of the Maxwell 
equation and of the gauge fixed Maxwell action 1 are a remarkable feature of 
4 dimensional electromagnetism in vacuum. The inclusion of matter requires 
non trivial topology (like a possibly nontrivial U(l) principal bundle) in 
order to preserve these symmetries. At the quantum level the lattice of 
electric-magnetic charges breaks the symmetry down to a discrete one. The 
Dirac-Schwinger quantization condition constrains the possible charges of 
a pair of dyons D(e,g) and D'(e',g') to satisfy: 

4ir(eg' — e'g)/h = integer (1.1) 

The two helicities of the electromagnetic field correspond to self-dual and 
antiself-dual field strengths. In euclidean signature the (real) classical field 
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strength can be decomposed locally into the sum of a self-dual part and an 
anti self-dual part ie 

dA = F,F±=±*F± (1.2) 

where * is the Hodge dualization operator on two forms. For Yang-Mills 
fields there is a celebrated generalization of the self-duality projection 
namely the instanton equation. Note that the usual instanton equation 
is first order and provides only special solutions to the full (vacuum) Yang-
Mills equations. 

1.2. Gauge forms 

Pointlike electric charges are minimally coupled to "vector" potentials and 
the generalization for scalar fields resp higher (p+l)-form potentials is their 
coupling respectively to instantons and p-branes. Abelian self-duality is pos
sible in even dimensional spacetimes of dimension (2p+4) of the appropriate 
signature for a single (p-(-l)-form potential. There is a generalization of the 
quantization condition (1.1) to this situation as well and interestingly it 
involves a plus sign rather than a minus sign in (4k+2) dimensions 2. 

One key property of these remarkable self-dual solutions is that they 
minimize the action by saturating a topological charge bound: the so-called 
BPS bound. It is E. Bogomolny who analyzed systematically this mech
anism and applied it to magnetic monopoles and dyons (independently 
studied by M. Prasad and C. Sommerfield) . The lower bound is typically 
a characteristic (for instance Pontryagin) number of the principal bundle 
under study 3. 

2. U-duality: selecta 

2.1. Gravity case 

The Einstein action in D dimensions is invariant under diffeomorphisms of 
the manifold Mp. Upon dimensional reduction by r commuting one pa
rameter isometry groups the effective action on the (D-r) quotient space 
(of orbits) the set of equations becomes invariant under a group of internal 
symmetries that grows with r. Part of it is expected for instance GL(r, R) 
or at least SL(r, R) but other parts of it come as surprises, the first of 
which is the so-called Ehlers symmetry SL(2, R) that is easy to verify after 
reducing ordinary Einstein gravity in D = 4 by one dimension (r=l) . More 
generally reduction of pure gravity from D to 3 dimensions leads to a gen
eralised Ehlers symmetry SL(D — 2, R), see for instance 4. This is a major 
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mystery and constitutes one of our motivations to concentrate on dualities 
in general, to discover new ones and to study their properties. 

2.2. The supergravity magic triangles 

If one considers at first the internal symmetries (commuting with the 
Poincare group) one encounters often coset spaces, even Riemannian sym
metric spaces, on which these symmetries act as real Lie groups. These 
cosets are the target spaces where scalar fields (ie 0-forms) take their val
ues. The symmetries are called U-dualities for historical reasons 5, approx
imately half of them act by (Hodge) dualities on the p-forms in their self-
duality dimension. A remarkable collection of (pure in D=4) supergravity 
theories as well as their dimensional reductions down to 3 dimensions and 
their higher dimensional ancestors fit into a triangle with partial symmetry 
under the exchange of the space-time dimension with the number of super
charges see 4. These groups are expected to play an important role in string 
theory after being broken down to a discrete (arithmetic) subgroup. 

In the example of 4 dimensions for instance the U-duality group of max
imal supergravity is the split real form of E7 it contains a parity conserving 
subgroup SL(8,R) and the other generators are dualities. The maximal 
compact subgroup of this real form of Ej is SU(8) sometimes called R-
symmetry just to confuse us. The string "gauge group" is expected to be 
the intersection of the split Ej with the discrete group Sp(56, Z). E-j is 
indeed a subgroup of Sp(56,R). One must double the number of vector 
potentials from 28 to 56 to realize locally the action of dualities, it turns 
out that the doubled set of fields obeys first order equations that are now 
equivalent to the second order original equations. We shall recognize this 
phenomenon as rather general and this will lead us to V-dualities. The 
doubled set of fist order equations is nothing but a (twisted) self-duality 
condition. For an early discussion of doubling see for instance 6. 

E.F = S*E.F (2.1) 

In our example F is the 56-plet of field strengths, E is a representative of 
the scalar fields taking their values in the exceptional group Ej and written 
in the 56 representation and S is a pseudo involution of square ±1 that 
compensates for the square of the Hodge operation ** = ±1 . 
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3. V-duality 

3.1. del Pezzo surfaces and Borcherds algebras 

Another mystery of duality is the occurrence not only of the exceptional 
group E-j but of the full (extended in fact) E series: E$, Ey, EQ, E$ = 
D$, Ei = Ai, E3 — Ai x A\... both as the U-duality groups of maximal 
supergravity reduced to 3,4,5,6,7,8... dimensions and as symmetry groups of 
type II string theories after torus compactifications. The equally mysterious 
occurrence of the E groups or rather of their Weyl groups acting on the 
middle cohomology of the socalled del Pezzo complex surfaces may be a 
related phenomenon. There are in fact two candidates for E\ so let us choose 
A\ which is known to be associated to the trivial bundle CP1 x CP1 (one of 
the two "minimal del Pezzo surfaces"). SL(2, Z) = A\ is known to be also 
the U-duality group of type IIB superstring theory in 10 dimensions (the top 
dimension). Besides the information provided by algebraic geometers (Y. 
Manin...) we used 7 one important remark of C. Vafa and collaborators! who 
stressed the importance of rational cycles within the second cohomology of 
the del Pezzo complex surfaces. For instance in the case of CP1 x CP1 the 
middle cohomology is quite boringly equal to Z + Z, yet one axis of this 
lattice is selected by the complex geometry to be the root lattice of the above 
mentioned A\ and the correspondence between spheres on the del Pezzo 
surface and D-branes on the string side 8 suggested to us that one should 
combine the Weyl cone of A\ and the Mori cone of the cohomology into 
a Borcherds cone associated to the simple (positive) roots of a generalized 
Cartan matrix obtained from that of Ai by replacing one of the diagonal 
elements (2) by a zero! The correspondence is best understood in this case 
but more generally it is still useful 7. The intersection form on the surface 
is in this case the metric on the Cartan subalgebra of a Borcherds algebra. 

3.2. Truncated Borcherds algebras and V-duality 

On the string/supergravity side we have known for a while 9 that there is 
a natural generalization of the Borel subgroup of U-duality (isomorphic to 
the corresponding non-compact symmetric space and target of the scalar 
fields) to a solvable group encompassing all the p-forms and encoding their 
non linear couplings but not the graviton field yet. The question was to 
give a name to this solvable group despite the absence of any reasonable 
classification of non semi-simple Lie algebras. It generalizes the encoding 
of nonlinear sigma model fields' couplings within the structure constants 
of a group, to that of higher forms' couplings in the (super)group struc-
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ture of this solvable algebra. A (p+l)-form will have degree (p+1) and 
the Z-graded solvable superalgebra reduces in degree zero precisely the U-
duality algebra or if one prefers its Borel subalgebra. There is a remarkable 
correspondence between the del Pezzo data and the string/M-theory data 
7. Two steps are left to ascend: firstly one should include gravity which 
only trickles down into this formalism after dimensional reduction, and sec
ondly one must incorporate the fermions (this will require the enlargment 
of the Borel algebras to full V-duality symmetry groups in order to allow 
for their "maximal compact subgroups" whatever this means to act on the 
fermions, but we have lots of experience even in the infinite dimensional 
case of spacetime dimension 2). 

4. A-Instantons 

4.1. Gravitational instantons 

Let us consider now a 4 dimensional Riemannian manifold and its Riemann 
curvature 4-tensor R. It is well known 3 that one may impose (Hodge) 
self-duality on the first (or second) pair of indices, this defines the usual 
gravitational instantons which are necessarily Ricci flat and provide a nice 
subset of solutions of the second order Einstein equations. One may also 
require to have double self-duality exactly as in (2.1) 

R = S*R (4.1) 

where S is the dualization on the first pair of indices if * is the dualization 
on the second pair. This is equivalent to the Einstein space condition (with 
unspecified cosmological constant). There is the conformal self-duality equa
tion too that guarantees the existence of a twistor space see for instance 
10 

4.2. A-instantons 

It seems to have gone unnoticed that there is yet another equation for 
any given value A of the cosmological constant that provides what we call 
A-instantons n . It is obtained by adding in the ordinary gravitational in-
stanton equation to the Riemann curvature tensor the combination 

-A/3(g^pgva - gvpgp.a) (4.2) 

the resulting tensor Zp.vpo turns out to be equal to the MacDowell Mansouri 
tensor associated to a de Sitter bundle 12. The A-instanton equation reads 
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simply 

Z = *Z. (4.3) 

It implies the Einstein equation for that particular value of the cosmological 
constant but it is not equivqlent to it. 

5. Duality in the gravitational sector 

5.1. Near flat space 

In a nice paper 13 the dual form of 4d linearized Einstein gravity was found 
to be again of the same type. The authors introduced 2 prepotentials and 
their associated pregauge invariances beyond diffeomorphism symmetry and 
showed they were interchangeable by a continuous duality rotation on shell. 
Even off shell the non-covariant action is invariant under duality exactly 
as in the Maxwell case. Such a duality exists at the nonlinear level in the 
presence of one Killing vector field it is precisely the Ehlers symmetry, 
whereas such an isometry is not assumed anymore here. The prepotentials 
are defined by solving the hamiltonian and momentum constraints. 

5.2. Near de Sitter space 

It maybe encouraging to go beyond this linear truncation to linearize around 
a different background and to try and see whether such a duality symmetry 
persists. Around de Sitter space (but the sign of the cosmological constant 
is not really important for local questions) indeed the duality rotation ex
changes the relevant components of the modified curvature tensor Z, the 
electric part is ZomOn a n d the magnetic part \/2Z^ne

pqn. When the cos
mological constant tends to zero the near flat space result is recovered 
smoothly. 

6. Conclusion 

We must now go nonlinear and it seems natural to expect from M-theory 
considerations that the dual theory does exist and that it is worth our 
efforts. More specifically the dual diffeomorphism invariance is suggestive 
of a doubling of spacetime, allowing for some self-duality condition that 
reduces the effective dimension to 4. This doubling is very familiar in string 
theory. We had no time to review quantum effects like quantum anomaly 
or NUT charge quantization. 
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This paper is a short survey of relationships among topology, quantum topology 
and quantum information theory. 

1. Introduction 

This paper is a summary of recent research of the author, much of it in 
collaboration with Sam Lomonaco, and more recently with Mo Lin Ge and 
Yong Zhang. The main thrust of this research has been an exploration of 
the relationship between quantum topology and quantum computing. This 
has included an exploration of how a quantum computer could compute 
the Jones polynomial, theorems establishing that generic 4 x 4 solutions to 
the Yang-Baxter equation are universal quantum gates, relationships be
tween topological linking and quantum entanglement, new universal gates 
via solutions to the Yang-Baxter equation that include the spectral pa
rameter 31>32

1 new ways to understand teleportation using the categorical 
formalism of quantum topology and a new theory of unitary braid group 
representations based on the bracket model of the Jones polynomial. These 
representations include the Fibonacci model of Kitaev, and promise to yield 
new insights into anyonic topological quantum computation. 

2. Quantum entanglement and Topological Entanglement 

It is natural to ask whether there are relationships between topological 
entanglement and quantum entanglement. Topology studies global rela
tionships in spaces, and how one space can be placed within another (e.g. 
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knotting and linking of curves in three-dimensional space.) Link diagrams 
can be used as graphical devices and holders of information. In this vein, 
Aravind x proposed that the entanglement of a link should correspond to 
the entanglement of a quantum state. We discussed this approach in 18-19. 
Observation at the link level is modeled by cutting one component of the 
link. A key example is the Borommean rings. See Figure 1. 

Figure 1 Borommean Rings 

Cutting any component of this link yields a remaining pair of unlinked rings: 
The Borommean rings are entangled (viz., the link is not split), but any two 
of them are unentangled. In this sense, the Borommean rings are analogous 
to the GHZ state \GHZ) = ( l / v

/2)( |000)+| l l l ) ) . Observation of any factor 
(qubit) of the GHZ yields an unentangled state. Aravind points out that 
this property is basis dependent, and we further point out that there are 
states whose entanglement after an observation is probabilistic. Consider, 
for example, the state (1/2)(|000) + |001) + |101) + |110)). Observation 
in any coordinate yields an entangled or an unentangled state with equal 
probability. New ways to use link diagrams must be invented to map the 
properties of such states. See 30. 

Our analysis of the Aravind analogy places it as an important question 
to which no definitive answer has yet been given. Our work shows that the 
analogy, taken literally, requires that a given quantum state would have 
to be correlated with a multiplicity of topological configurations. We are 
nevertheless convinced that the classification of quantum states according 
to their correspondence to topological entanglement will be of practical 
importance to quantum computing, distributed quantum computing and 
relations with quantum information protocols. 
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3. Entanglement, Universality and Unitary R-matrices 

Another way to approach the analysis of quantum entanglement and topo
logical entanglement is to look at solutions to the Yang-Baxter equation 
(see below) and examine their capacity to entangle quantum states. A solu
tion to the Yang-Baxter equation is a mathematical structure that lives in 
two domains. It can be used to measure the complexity of braids, links and 
tangles, and it can (if unitary) be used as a gate in a quantum computer. 
We decided to investigate the quantum entangling properties of unitary 
solutions to the Yang-Baxter equation. 

We consider unitary gates R that are both universal for quantum com
putation and are also solutions to the condition for topological braiding. 
A Yang-Baxter operator or R-matrix 3 is an invertible linear operator 
R: V <g> V —> V <8> V, where V is a vector space, so that R satisfies 
the Yang-Baxter equation: 

{R ® I)(I ® R)(R ® I) = (I ® R)(R ® / ) ( / ® R), 

where / is the identity map of V. This concept generalizes the permutation 
of the factors (i.e., it generalizes a swap gate when V represents one qubit.) 

Topological quantum link invariants are constructed by the association 
of an R-matrix R to each elementary crossing in a link diagram, so that 
an R-matrix R is regarded as representing an elementary bit of braiding 
given by one string crossing over another. In Figure 2 below, we have illus
trated the braiding identity that corresponds to the Yang-Baxter equation. 
There is no room in this brief description to give the full translation from 
the topological picture into the algebraic one. Suffices it to say that each 
braiding picture with its three input lines (below) and output lines (above) 
corresponds to a mapping of the three fold tensor product of the vector 
space V to itself as required by the algebraic equation quoted above, and 
the pattern of placement of the crossings in the diagram correspond to the 
factors R <g> / and I®R. The point is that this crucial topological move has 
an algebraic expression in terms of the R-matrix R. 
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Figure 2 The Yang-Baxter Equation at the braid level 

We worked on relating topology, quantum computing, and quantum en
tanglement through the use of R-matrices. In order to accomplish this aim, 
we have the following studied unitary R-matrices, interpreting them as both 
braidings and quantum gates. 

The problem of finding unitary R-matrices turns out to be surprisingly 
difficult. Dye 6 has classified all such matrices of size 4 x 4 , and we are still 
working on a general theory for the classification and of unitary R-matrices 
in other dimensions. 

A key question about unitary R-matrices is to understand their ca
pability of entangling quantum states. We use the criterion that <j> = 
a|00) + 6|01) + c|10) + d|l l) is entangled if and only if ad - be ^ 0. This 
criterion is generalized to higher dimensional pure states in the papers 18 '19 

by Kauffman and Lomonaco. We discovered families of R-matrices that de
tect topological linking if and only if they can entangle quantum states. 
A recent example in 29 is a unitary R-matrix that is highly entangling for 
quantum states. It takes the standard basis for the tensor product of two 
single-qubit spaces onto the Bell basis. On the topological side, R gener
ates a non-trivial invariant of knots and links that is a specialization of the 
well-known link invariant, the Homflypt polynomial. 

Entanglement and quantum computing are related in a myriad of ways, 
not the least of which is the fact that one can replace the CNOT gate 
by another gate R and maintain universality (as described above) just so 
long as R can entangle quantum states. That is, R can be applied to some 
unentangled state to produce an entangled state. It is of interest to examine 
other sets of universal primitives that are obtained by replacing CNOT by 
such an R. 
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We proved that certain solutions R to the Yang-Baxter equation to
gether with local unitary two dimensional operators form a universal set 
of quantum gates. Results of this kind follow from general results of the 
Brylinskis 4 about universal quantum gates. The Brylinskis show that a 
gate R is universal in this sense, if and only if it can entangle a state that 
is initially unentangled. We show that generically, the 4 x 4 solutions to the 
Yang-Baxter equation are universal quantum gates. 

For example, the following solutions to the Yang-Baxter equation are 
universal quantum gates (in the presence of local unitary transformations): 

R = 

I 1/V2 0 0 i / V 5 \ 
0 1 /V2-1 /V2 0 
0 1/V2 l / \ /2 0 

V-1/V2 0 0 1/V2J 

R' 

1 0 0 0 \ 
0 0 1 0 
0 1 0 0 

, 0 0 0 - 1 / 

R" = 

fa000\ 
0060 
0 600 

V000a/ 

where 0,6 are unit complex numbers with a2 ^ 62. 

R is the Bell-Basis change matrix, alluded to above. R' is a close relative 
to the swap-gate (which is not universal). R" is both a universal gate and a 
useful matrix for topological purposes (it detects linking numbers). In this 
last example, we see a solution to the Yang-Baxter equation that detects 
topological linking exactly when it entangles quantum states. 

These results about i?-matrices are fundamental for understanding topo
logical relationships with quantum computing, but they are only a first step 
in the direction of topological quantum computing. In topological quantum 
computing one wants to have all gates and compositions of gates intepreted 
as part of a single representation of the Artin Braid Group. By taking only 
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a topological operator as a replacement for CNOT, we leave open the ques
tion of the topological interpretation of local unitary operators. 

One must go on and examine braiding at the level of local unitary 
transformations and the problem of making fully topological models. The 
first step in this process (although made only recently and by us 23) is 
to classify representations of the three-strand braid group into SU(2). To 
go further involves finding brading representations into U(2) that extend 
to dense representations in U(N) for larger values of N. This is where 
topological quantum field theory comes into play. In the next section we 
outline our appproach to full topological quantum computation. 

4. Topological Quantum Field Theory and Topological 
Quantum Computation 

As described above, one comes to a barrier if one only attempts to construct 
individual topological gates for quantum computing. In order to go further, 
one must find ways to make global unitary representations of the Artin 
Braid Group. One way to accomplish this aim is via topological quantum 
field theory. Topological quantum field theory originated in the work of 
Witten 26 with important input from Atiyah 2. This work opened up quan
tum field theoretic intepretations of the Jones polynomial (an invariant on 
knots and links, new at that time) and gave rise to new representations 
of the braid groups. The basic ideas of topological quantum field theory 
generalize concepts of angular momentum recombination in classical quan
tum physics. In 22,23 we use generalizations (so-called q-deformations) of 
the Penrose 24 formalism of spin networks to make models of topological 
quantum field theories that are finite dimensional, unitary and that pro
duce dense representations of the braid group into the unitary group. These 
representations can be used to do quantum computing. In this way, we re
cover a version of the results of Freedman 7 - u and his collaborators and, by 
making very concrete representations, open the way for many applications 
of these ideas. Our methods are part of the approach to Witten's invari
ants that is constructed in the book of Kauffman and Lins 22. This work is 
directly based on the combinatorial knot theory associated with the Jones 
polynomial. Thus our work provides a direct and fundamental relationship 
between quantum computing and the Jones polynomial. 

Here is a very condensed presentation of how unitary representations 
of the braid group are constructed via topological quantum field theoretic 
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methods. The structure described here is sometimes called the Fibonacci 
model 23>25'12. One has a mathematical particle with label P that can inter
act with itself to produce either itself labeled P or itself with the null label 
*. When * interacts with P the result is always P. When * interacts with * 
the result is always *. One considers process spaces where a row of particles 
labeled P can successively interact subject to the restriction that the end 
result is P. For example the space I^[(a6)c] denotes the space of interactions 
of three particles labeled P. The particles are placed in the positions a, b, c. 
Thus we begin with (PP)P. In a typical sequence of interactions, the first 
two P's interact to produce a *, and the * interacts with P to produce P. 

(PP)P —• (*)P —» P. 

In another possibility, the first two P's interact to produce a P, and the P 
interacts with P to produce P. 

(PP)P —> (P)P —> P. 

It follows from this analysis that the space of linear combinations of pro
cesses V[(o6)c] is two dimensional. The two processes we have just described 
can be taken to be the the qubit basis for this space. One obtains a rep
resentation of the three strand Artin braid group on V[(a6)c] by assigning 
appropriate phase changes to each of the generating processes. One can 
think of these phases as corresponding to the interchange of the particles 
labeled a and b in the association (ab)c. The other operator for this rep
resentation corresponds to the interchange of b and c. This interchange is 
accomplished by a unitary change of basis mapping 

F : V[(ab)c] —> V[a(bc)}. 

If 

A : V[(ab)c] —• V[(ba)c] 

is the first braiding operator (corresponding to an interchange of the first 
two particles in the association) then the second operator 

B : V[(ab)c] —• V[(ac)b] 

is accomplished via the formula B — F~lAF where the A in this formula 
acts in the second vector space l/[a(6c)] to apply the phases for the inter
change of b and c. 
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In this scheme, vector spaces corresponding to associated strings of par
ticle interactions are interrelated by recoupling transformations that gen
eralize the mapping F indicated above. A full representation of the Artin 
braid group on each space is defined in terms of the local intechange phase 
gates and the recoupling transfomations. These gates and transformations 
have to satisfy a number of identities in order to produce a well-defined 
representation of the braid group. These identities were discovered origi
nally in relation to topological quantum field theory. In our approach 23 

the structure of phase gates and recoupling transformations arise naturally 
from the structure of the bracket model for the Jones polynomial. Thus we 
obtain a knot-theoretic basis for topological quantum computing. 

Many questions arise from this approach to quantum computing. The 
deepest question is whether there are physical realizations for the mathe
matical particle interactions that constitute such models. It is possible that 
such realizations may come about by way of the fractional quantum Hall 
effect or by other means. We are working on the physical basis for such mod
els by addressing the problem of finding a global Hamiltonian for them, in 
analogy to the local Hamiltonians that can be constructed for solutions to 
the Yang-Baxter equation. We are also investigating specific ways to create 
and approximate gates in these models, and we are working on the form of 
quantum computers based on recoupling and braiding transformations. 

These models are based on the structure of the Jones polynomial 
13,15-17,21 They lead naturally to the question of whether or not there 
exists a polynomial time quantum algorithm for computing the the Jones 
polynomial. The problem of computing the Jones polynomial is known to 
be classically P#-hard, and hence, classically computationally harder than 
NP-complete problems. Should such a polynomial time quantum algorithm 
exist, then it would be possible to create polynomial time quantum algo
rithms for any NP-complete problem, such as for example, the traveling 
salesman problem. This would indeed be a major breakthrough of greater 
magnitude than that arising from Shor's and Simon's quantum algorithms. 
The problem of determining the quantum computational hardness of the 
Jones polynomial would indeed shed some light on the very fundamental 
limits of quantum computation. 

A polynomial time quantum algorithm (called the AJL algorithm) for 
approximating the value of the Jones polynomial L(t) at primitive roots of 
unity can be found in 14. We are currently writing a paper 23 that shows 
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tha t this algorithm can not sucessfully be extended by polynomial interpo

lation to a polynomial t ime quantum algorithm for computing the Jones 

polynomial. However, there is a loop hole. It may well still be possible to 

modify the AJL algorithm in such a way tha t it can be used to create a 

polynomial t ime algorithm for L(t). We propose to investigate why this is 

or is not the case. Our objective is to come to a bet ter understanding of 

the exact divide between classical and quan tum algorithms. 
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We show how the condition dN = 0 replacing the usual exterior differential's 
property d2 — 0 leads to a natural generalization of cohomology. The case 
of JV = 3 is analyzed in more detail, and simple algebraic realizations are 
constructed. The notion of a connection 1-form and the corresponding covariant 
differential are generalized, too. A Z^r-graded differential calculus is introduced 
and the corresponding gauge invariants of higher order are defined. 

1. Introduction 

This paper presents the results obtained in a series of papers ( 2 ) , (4), 
(5), (7) in which a framework for the dN = 0, N > 2 generalization of 
classical exterior differential calculus (with d2 = 0) has been introduced 
and developed. 

Our starting point consists in introducing a Zjv-graded algebra A of 
generalized exterior forms with an associative mutliplication rule. There 
are no particular conditions imposed on this product, except for the case 
when the result attains the highest degree, i.e. N: if w is a form of degree 
p and 6 is a form of degree N — p, we must have 

oj6 = q^6uJ, (1.1) 

where | w | denotes the degree of the form u>, and q is an iV-th primitive 
root of unity satisfying 1 + q + q2 + ... + qN~l = 0 . Next, we introduce 
a differential operator on the algebra of abstract p — forms satisfying the 
following Q-Leibniz rule: 

d(w9) = (du)9 + q^d6. (1.2) 
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We also impose the condition dN = 0. The immediate consequence of this 
assumption is the appearance of an entirely new set of generalized differen
tials d2f, d3f,..., up to d^N~^f, where / is a O-form. In the simplest case 
of N = 3 we have to add the second-order forms d2xl to the usual set of 
first-order differentials dxl. 

The following obvious questions should be answered: 

1) How the notion of cohomology can be generalized ? 
2) How to find simple realizations of such calculus ? 
3) How Stokes' theorem should be generalized ? 
4) What are the analogs of covariant derivation, linear connection and cur
vature ? 
5) How a gauge theory can be developed within this formalism ? 

These questions have been partly or fully answered in the aforemen
tioned series of papers co-authored with M. Dubois-Violette, V. Abramov 
and B. Niemeyer (6), (2), (3), (4), (5), (7). In what follows, we shall display 
shortly the main results in this novel field yet to be explored. 

2. Generalized Cohomology 

The usual definition of cohomology is related to the definition of quo
tient spaces Ker(d)/Im(d) i.e. the forms whose exterior differential van
ishes ("closed forms") but which are not differentials. Now, assuming that 
the higher-order differentials do not vanish, we can define new cohomology 
spaces. For example, for N = 3 we have not only first-order differentials 
df, but also the second-order forms d2f, whereas d3f — 0 identically. Ob
viously, Im{d) C Ker(d2), Im(d2) C Ker(d), and we define two space of 
forms that are "2-closed" but not "2-exact": # ( 2 ) = Ker(d2)/Im(d), and 
the more usual H^ = Ker(d)/Im(d2), 

Of course, each type of cohomology spaces contains a whole series of 
subspaces labeled by another index related to the degree of forms we are 
considering; thus, we should have Ha and Ha with the subscript a cov
ering the range of values including all possible degrees. 

In the case of arbitrary N > 2 one has H^k) = Ker(dk)/Im(dN~k) Let 
I and m such that l + m<N. One obviously has tf(°> = {0}, #(JV> = {0}. 
The natural inclusion 

il : Ker(dm) C Ker(dV+m^ 
induces a linear mapping [il] : H^ —> H^l+m\ since Im(dN~m) C 
Im{dN-V+m">) On the other hand, one has dm (Ker(d(l+m*>)) C Ker(dl) 
and dm Im(dN~(-l+m^) C Im{dN~l) therefore the operator dm induces a 
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linear mapping [dm] : #(<+") -> Hl. 
Due to the above identities and definitions the following "magic 

hexagon" can be drawn, in which all sequences are exact: 

jj{N-m) 

The simplest example is provided by the non-commutative geometry of 
the 3 x 3 complex matrices. Let q = e~%~ so that q3 = 1. 

An atrbitrary matrix B £ A = Ms(C) can be decomposed into three 
parts with corresponding grades 0,1 and 2 as follows: A = Ao + Aj + A2 

CA0, i l o o A \ c A l t { l A 0 0 ] ) c A 2 . (2.1) 
1 \ 7 0 0 / J l \ 0 p 0 / J 

Under ordinary matrix multplication the grades add up modulo 3. In non-
commutative geometry of matrices the infinite-dimensional commutative al
gebra of smooth functions on a manifold is replaced by the non-commutative 
algebra A. The ^-graded differential is denned as a ^-deformed commuta
tor: for any B G A = M3(C), we define 

/0 1 0 \ 
dqB = rjB-qwBr], with 77 = 0 0 1 (2.2) 

V100/ 

where | b |= grade(B). One checks easily that d3B = 0 for any B, and that 

Ker(dg) = 

whereas 

Ker(d2
q) = Ker(dq) 
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It is easy to check that 

Im(dg) = Ker(dq), and Im{dq) = Ker(d2), 

so that all cohomology spaces are trivial (contain just the zero element). 

3. Stokes' theorem 

In classical differential geometry the Stokes theorem can be written in a 
compact form as follows: 

dw= to, (3.1) 
Jc Jac 

where w is a p-form and C is a (p + l)-chain, so that dC is a p-chain and 
dw is a (p + l)-form, and we have d2C = 0 and d2u> = 0. 

In the case when d2 ^ 0 but dN = 0 instead, the straightforward gener
alization of Stokes' formula (3.1) should read 

/ dN~lu, = [ dN'2u = . . .= /" dN~3LJ = ... / W) (3.2) 
Jc Jac Je2c JaN-1c 

where u is a p-form and C is an (N + p — l)-chain. 
Let us show the realization of this formula on integration defined over 

the ^3-graded matrix geometry introduced in the previous section. Because 
the integration over a p-chain can be considered as linear functional acting 
in the space of p-forms, in the case of matrix geometry the definition of a 
p-chain becomes unique: it is a matrix from A = M J V ( C ) of degree p, too. 
Then the integral of a p-form u> over a p-chain C is defined as a trace of 
Tr{CTu)). The grade of CT is equal to (2p)mod3, so that the matrix CTUJ 

is diagonal (of grade 0). The matrices belonging to the grade 1 and grade 2 
subspaces are traceless. Let us prove the formula (3.2) with the integration 
of matrix forms over matrix chains. What remains to be defined is the 
boundary of a p-chain. We postulate the following: 

dC = T]TC - q2™idcl CT]T, (3.3) 

It is enough to prove that Tr{CT duj) = Tr((dC)T w). We have: 

Tr(CT du) = Tr(CTriuj - q^CFurf) =)Tr(Cr}w) - g M Tr{Curj), 

Tr{dCuj) = Tr((r]TC - q2^ Cr?T)Tw), = Tr{CTT)u) - q2^ i)CTu) (3.4) 

The first terms coincide, while the second terms in both expressions are 
also identical because the trace of any poduct of matrices is invariant under 
cyclic permutations. This completes the proof, and from here, the general
ized Stokes' formula 3.2 is obtained by iteration. 
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4. Z3-graded differentials calculus on manifolds 

Consider a manifold described locally by a set of real coordinates {£*}, 
i = l , 2 , . . . , n. We postulate that the differential df of a function / coincides 
by definition with the usual one: 

df=^de = (dkf)de (4.i) 

When computing formally higher-order differentials, we shall suppose 
that our exterior differential operator d obeys the Z/y-graded Leibniz rule: 

d(u}<S>) = dw4> + qde^^ujd^, (4.2) 

where we suppose that q is an JV-th order root of unity, instead of —1 in the 
Z2-graded case, and that the grades add up modulo TV under the associative 
multiplication of forms; the functions are of grade 0, and the operator d 
raises the grade of a form by 1, which means that the linear operator d 
applied to £fc produces a 1-form whose Z^-grade is 1 by definition; when 
applied two times, by iteration, it will produce a new entity, which we shall 
call a 1-form of grade 2, denoted by d2£k. Finally, we require that dN = 0. 

Let F denote the algebra of functions of n variables C°°(£k), over which 
the Zjv-graded algebra generated by the forms d£l, d2£k, d3£k, etc., behaves 
as a left module. In other words, we shall multiply the forms d^ , d?£k, 
d£ld(;k.., by the functions on the left only; right multiplication will just not 
be considered here. We shall write by definition 

d(?£k) := ?d£k + Zkd?. (4.3) 

This amounts to suppose that the coordinates (functions) commute with 
the 1-forms, but do not necessarily commute with the forms of higher order. 

From now on, we shall consider the simplest example of such structure 
when N = 3 and q = e~3~. 

With the ^-graded Leibniz rule established in 4.2 the postulate d3 = 0 
imposes certain ternary and binary commutation rules on the differentials 
d£l and d2£fc. Consider the differentials of a function of the coordinates £fe: 

df : = (dif)dC ; d2f := (dkdif)dtkd? + (dif)d2C ; 

d3f = (amdkdif)d?nd£kdZi + {dkdif)d2edC 

+ q(dkdif)dCd2e + (dkdif)ded2C ; 

(we remind that the last part of the differential, (dif)d3^, vanishes by 
virtue of the postulate d3£l = 0). Supposing that partial derivatives com
mute, exchanging the summation indices i et k in the last expression and 
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replacing 1 + q by — q2, we arrive at the following two conditions that lead 
to the vanishing of d3f : 

dtmd£kde + dtkd?dC + dCdCd^ = 0 d2ikdC - q2dCd2£k = 0. (4.4) 

which leads in turn to the following choice of relations: 

d£*d£kdZm = qd^d^dC, and d^d2^ = q<Ptkd?. (4.5) 

Strictly speaking, the above formulae hold only for the symmetric part 
of the above expression; we choose to impose stronger relations in order to 
make the resulting space of forms finite-dimensional. 

Extending these rules to all the expressions with a well-defined grade, 
and applying the associativity of the ^-exterior product, we see that all 
products of the type d£ld£kd£md£n and d£ld£kd2£m must vanish, and along 
with them, also the monomials of higher order containing these as factors. 
The proof is straightforward: consider the algebra of forms spanned by the 
basis of n forms of degree 1, 9a, a, b,... = 1,2, ...n. Let us form a product 4 
such forms, 6a6bec6d. As we have now 9a6b6c = q 9b9c9a , we can use this 
formula to evaluate several permutations: 

(9a9b9c)9d = q9b(9c9a9d) = q2 6b(6a6d6c) = q36a(9d6b6c) = qi6a0b6c6d 

and as qA = q ^ 1, the four-product 9a9b9c6d must be zero. 
Still, this is not sufficient in order to satisfy the rule d3 = 0 on all the 

forms spanned by the generators d^1 and d2£k. It can be proved without 
much pain that the expressions containing d?£ld2£k must vanish, too; so 
we set forward the additional rule declaring that any expression containing 
four or more operators d must identically vanish. With this set of rules we 
can check that d3 = 0 on all forms, whatever their grade or degree. 

The dimension D of this module is 

n3 + 6n2 + 5n 

3 ' 

As a matter of fact, we have n first order differentials dx%. There are n2 +n 
monomials spanning the module of 2-forms because we have n2 indepen
dent products dx%dx^ and n second order differentials d2xl. The number of 
monomials spanning the module of 3-forms is (n3—n)/3+n2 since there are 
(n3 — n) /3 independent monomials dxldx^dxk and n2 independent mono
mials dxld2xK Summing all these one finally obtains the dimension of the 
module Sl{U) 

Although we have described the construction of the algebra Q,{U) 
only in the case TV = 3 it can be extended to any integer 
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N > 3. In this case our algebra is generated by the differentials 

The operator d satisfies the g-graded Leibniz rule and if we require 
that dN = 0, we should impose the following minimal set of generalized 
commutation rules on the products of forms of order N: 

d£kid£k2 . ..d£kN = qd£k* . ..d£kNdtkl = q2d£k3.. .d£kNd£kld£k2.., (4.6) 

In the above formula (4.6) one can insert a higher-order differential da^k, 
a — 2,.., N — 1 replacing a product of a 1-forms, and the formula should 
still hold, e.g. d^dN_1^k = qd^dN~x^k As a corollary, one can conjecture 
that for N > 3 any product of more than N such 1-forms must vanish, and 
the proof is similar as in the casee N = 3. 

5. Linear connection and curvature 

Let {efc} denote the set of N independent vectors denned at any point 
of our space (which we suppose locally isomorphic with RN), forming a 
basis. We define the covariant differential of e^ by means of the covariant 
derivatives of the efc which define the connection coefficients T\k: 

Vek=Viekdl;k =Tl
iketdC (5.1) 

Now, when applying this operation second time, we get: 

V2 efc = dm r | fce, dCd? + r ' f c(Vm efc) dCd? + Tl
ik e, d2 f (5.2) 

which in view of the definition of Vmefc can be written as: 

V2 efc = (dm Y\k + Tl
mj T{k \ et d^d? + T\k et d2? (5.3) 

In the usual differential geometry we would set by definition <i2£fc = 
0, and dt;ld(;k = —d^kd^1, which automatically leads to the well-known 
expression 

V2efc = i 4 i f c e ; d r A d C (5.4) 

with 

JDI _ a yl _ a.r^l , W rj __ -pi rvJ lvmi k — umL ik vti. m k T i. mj J. ik J- ij J- m k , 

Here we do not assume d2 £fc = 0 anymore, neither a particular symmetry 
of the tensorial product of the differenitals d£k <8> df;m. Therefore we must 
write instead: 

V2 ek = Q Rl
mi k + \ PL fc) e, dr d? + Tl

ik e, d2 f (5.5) 
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with a new entity 

"mi k = °m J- ik + "i 1 mk + T ^ 1 ife + T^ rmfc 

Note that Pl
mi k does not transform as a tensor under a change of coor

dinates, but obeys instead a non-homogeneous transformation law, like the 
connection coefficients. 

However, if we compute the third covariant derivative of efc, V3 efc, sup
posing the differentials obey the ^-graded exterior algebra defined in pre
vious section, we get the following expression: 

V3 ek = Rl
mi k et d2r d? + \ [V„ Rl

im k - V m R\n k) e, d?d?dT 

+ tJY~ [V„RLk + VmRlk]eidCdCdr- (5.6) 

It is interesting to note that only two combinations of the covariant 
derivative of R\km appear here; as a matter of fact, the third one, V» Rl

mnk 
is linearly dependent by virtue of Bianchi identity. 

The expression for V3 efc in the case of ^-graded differential calculus 
defined above has a clear geometrical meaning. In the usual (i^-graded) 
case, the vanishing of the expression V2efc was equivalent with a zero-
curvature condition, Rl

imk = 0; here, the vanishing of V3ej; also implies 
vanishing curvature, however, another invariant and interesting condition 
can be formulated, i.e. 

V3e fe = H[mfce, 

implying constant curvature condition satisfied in symmetric spaces. 

6. A Z 3 -graded Gauge Field Model 

Let A be the above associative ^-graded matrix algebra with unit element, 
and let H be a free left module over this algebra. Let A be a grade 1 matrix 
belonging to our algebra. 

We shall introduce the covariant differential of a form $ as usual: 

D$ := d$ + A$; (6.1) 

If the module is a free one, any of its elements $ can be represented 
by an appropriate element of the algebra acting on a fixed element of H, 
so that one can always write $ = B $ 0 ; then the action of the group of 
automorphisms of H can be translated as the action of the same group on 
the algebra A. 
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Let U be a function defined on M with its values in the group of the 
automorphisms of H. The definition of a covariant differential is equivalent 
with the requirement DU~1B = U~1DB; as in the usual case, this leads 
to the following well-known transformation for the connection 1-form A : 

A^U-lAU + U-ldU; (6.2) 

But here, unlike in the usual theory, the second covariant differential 
£>2$ is not an automorphism: as a matter of fact, we have: 

D2<f> = d(d$ + A$)+A(d$ + A$)=d2$ + dA<f> + (l+q)Ad<f> + A2<f>; (6.3) 

the expression containing d?$ and d$ ; whereas Z?3$ is an automorphism 
indeed, because it contains only $ multiplied on the left by an algebra-
valued 3-form: 

D3$ = d(D2$)+A(D2$), (6.4) 

which gives explicitly: 

d(d2$ + dA$ + qAd$ + A2$) + A(d2$ + dA$ + qAd$ + Ad$ + A2$) (6.5) 

With a direct calculus one observes that all terms containing d$ or d 2 $ 
simplify because of the identity 1 + q + q2 = 0, leaving only 

D3$ = (d2A + d(A2) + AdA + A 3 )$ = (D2A)$ := Q$; (6.6) 

Obviously, because D(U~l$>) = C/_1 (£>$), one also has: 

D3^-1®) = U-^D3®) = u-1^ = u-iQuu-1®, 
which proves that the 3-form CI transforms as usual, CI => U~1CIU when 
the connection transforms according to the law: A =>• U~1AU + U~1dU. 

It can be also proved by a direct calculus that the curvature 3-form Cl 
does vanish identically for A = U~1dU (see 3, 7)). 

Now let show how such a Z3-graded gauge theory can be realized with 
our ^-graded differential forms on a manifold. 

The curvature 3-form Cl = d2A+d(A2)+AdA+A3 is of grade 0; therefore 
it must be decomposed along the elements d£ld£kd£m and d2£ldt;k. Here 
is how we can compute its components in a local coordinate system. By 
definition, A — Aid^1, so we have: 

dA = dMCdt* + Akd
2^k; (6.7) 

After replacing 1 + q by — q2, and taking into account the relation 
d£kd2C = qd2Cd£k, we get: 

d2A = (dmdiAk)drded^k + (diAk - dkAi)d2edt;k; (6.8) 
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Then, d(A2) + AdA = dAA + qAdA + AdA = dAA - q2AdA, (6.9) 

due to the relations 

d?md2£k = qd2(,kd(m and d f dC[d£k = qd?d£kdim, 

it can be shown by simple calculus that the curvature 3-form can be written 
in local coordinates as follows: 

n = d2A + d(A2) + AdA + A3 = nikmdedtkd£m + Fikd
2ildik (6.10) 

where Q.ikm := didkAm + AidkAm - dkAmAi + AiAkAm, (6.11) 

and Fife := diAk - dkAi + AiAk - AkA; (6.12) 

Fik is the 2-form of curvature (the field tensor) of usual gauge theories. 
We know that the expression Fik is covariant with respect to the gauge 
transformations; on the other hand, the 3-form fl is also covariant; therefore, 
the local expression fi^ must be covariant, too. Indeed, it can be expressed 
as a combination of covariant derivatives of the 2-form Fik: 

1 ' F\ 
^ikm = —^[DiFmk + DkFmi] + l—[DiFmk - DkFmi] (6.13) 

It is interesting that only two independent combinations appear here, the 
third one being determined automatically by the Bianchi identity. 
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We review and generalize the recent progress in a soliton cellular automaton 
known as the periodic box-ball system. It has the extended affine Weyl group 
symmetry and admits the commuting transfer matrix method and the Bethe 
ansatz at q = 0. Explicit formulas are proposed for the dynamical period and 
the number of states characterized by conserved quantities. 

1. Introduction 

In [13], a class of periodic soliton cellular automata is introduced associated 
with non-exceptional quantum amne algebras. The dynamical period and 
a state counting formula are proposed by the Bethe ansatz at q = 0 [11]. 
In this paper we review and generalize the results on the An' case, where 
the associated automaton is known as the periodic box-ball system [14, 19]. 
The box-ball system was originally introduced on the infinite lattice without 
boundary [18, 17]. Here is a collision of two solitons with amplitudes 3 and 
1 interchanging internal degrees of freedom with a phase shift: 

•••1114221111131111111111111111 • •• 
•••1111114221113111111111111111 • •• 
•••1111111114221311111111111111 • •• 
•••1111111111114232111111111111 • •• 
•• • 1111111111111121432111111111••• 
•••1111111111111112111432111111 • •• 
•••1111111111111111211111432111••• 

The system was identified [4, 3] with a solvable lattice model [1] at q = 0, 

http://ac.jp
mailto:takenouchi@gokutan.cu-tokyo.ac.jp
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which led to a direct formulation by the crystal base theory [5] and gener
alizations to the soliton cellular automata with quantum group symmetry 
[7, 6]. Here we develop the approach to the periodic case in [13] further by 
combining the commuting transfer matrix method [1] and the Bethe ansatz 
[2] at <? = 0. 

In section 2 we formulate the most general periodic automaton for 
g„ = A1-1*1 in terms of the crystal theory. A commuting family of time evo
lutions {Tj } is introduced as commuting transfer matrices under periodic 
boundary condition. The associated conserved quantities form an n-tuple 
of Young diagrams m = {m^\ . . . , m^), which we call the soliton content. 

In section 3 we invoke the Bethe ansatz at q = 0 [11] to study the Bethe 
eigenvalue A; relevant to Tj . The Bethe equation is linearized into the 
string center equation and the A; is shown to be a root of unity. We 
also recall an explicit weight multiplicity formula obtained by counting the 
off-diagonal solutions to the string center equation [11]. It is a version of 
the fermionic formula called the combinatorial completeness of the string 
hypothesis at q = 0. These results are parameterized with the number of 
strings, which we call the string content. 

In section 4 two applications of the results in section 3 are presented 
under the identification of the soliton and the string contents. First we relate 
the root of unity in the Bethe eigenvalue A; ' to the dynamical period of the 
periodic An automaton under the time evolution Tj . Second we connect 
each summand in the weight multiplicity formula [11] to the number of 
states characterized by conserved quantities. 

In [13], similar results have been announced concerning the highest 
states. Our approach here is based on conserved quantities and covers a 
wider class of states without recourse to the combinatorial Bethe ansatz at 
q — 1 [10]. We expect parallel results in general gn. In fact all the essential 
claims in this paper make sense also for $n = Dn ' and -Eg 7 8- Our formulas 
(3.9) and (3.11) include the results in [19] proved by a different approach 
as the case fln = A[' with B = (Bl<l)®L and I = oo. For the standard 
notation and facts in the crystal theory, we refer to [5, 9, 6]. 

2. Periodic A^ automaton 

Let Ba>j (1 < a < n,j G Z>i) be the crystal [9] of the Kirillov-
Reshetikhin module W^a) over Uq(A^]). Elements of Ba>i are labeled 
with semistandard tableaux on an a x j rectangular Young diagram with 
letters {1,2, . . . , n + 1}. For example when n = 2, one has B1'1 = 
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{1>2,3},B1,2 = {11,12,13,22,23,33}, B • = | 2 2 > 2 3 ' 3 3 > 2 3 > 3 3 ' 3 3 / 
as sets. AE{Ba>i) = {(db \ b G Ba>i,d G Z} denotes the affine crystal. 
The combinatorial R is the isomorphism of affine crystals AfF(Ba,:?) ® 
AS(Bb'k) ^ AS(Bb'k) ® Afi(Ba<i) [16]. It has the form R((db <g> (ec) = 
(e+Hc <g) (d~Hb, where H = H(b <g> c) is the energy function. We normalize 
it so as to attain the maximum at H{ua^ ®ub'k) = 0, where ua'i G Ba'i de
notes the classically highest element. We set B = Bruh ®BT2'12®- • -®BrL>lL 

and write AS(Bri'h) ® • • • ® k&{BrL>lL) simply as Aff(5). An element of 
B is called a state. Given a state p = b\ ® • • • <8> br, G B, regard it as 
the element (°bi ® • • • ® C°^L & Afi(B) and seek an element v G Br'1 

such that C,°v <g> p ~ (Cdl&i <8> ••• <S> C,dLb'L) <g> Ceu under the isomor
phism Aft(Br>1) <g> Aff(B) ~ Aff(B) <8> AS(Br'1). If such a v exists and 
Cdl b\ <8> • • • <8> CdL &L is unique even if v is not unique, we say that p is 
(r, l)-evolvable and write T,(r)(p) = bi ® • • • ® 6'L G B and £,(r)(p) = e = 

—d\ dL- Otherwise we say that p is not (r, Z)-evolvable or Tj '(p) = 0. 

We formally set Tj ^(0) = 0. Z?( G Z>o holds under this normalization. 
Our An ' automaton is a dynamical system on B U {0} equipped with the 
family of time evolutions {T;

(r) | 1 < r < n,l G Z>i}. T,(r) is the q = 0 
analogue of the transfer matrix in solvable vertex models. It is invertible 
and weight preserving on B. Using the Yang-Baxter equation of the com
binatorial R, one can show (cf. [3, 6]) 

Theorem 2.1. The commutativity TJa)Tfc
(6)(p) = T^b)TJa)(p) is valid for 

any (a,j), (b, k) and p G B, where the both sides are either in B or 0. In 
the former case £Ja)(Tfc

(6)(p)) = Ef\p) and E{b){T^\p)) = E^\p) hold. 

Thus, {Ej | 1 < a < n , j G Z>i} is a family of conserved quantities. 

Conjecture 2.1. For any l<a<n andp G B, there exists i>\ such that 
T£ (p) ^ 0 if and only if k > i. The limit limfc_»oo 7^ (p) G B exists and 
Ela)(p) < E&\(p) <•••< £<a)(p) = E^ip) = ••• holds for some j>i. 

Let So, S\,..., Sn be the Weyl group operators [5] and pr be the promotion 

operator [16] acting on B component-wise. For instance for A3 , pr( 034 ® 

1344~) = 111® 1124 G B2'3 <g> B1'4. They act on B as the extended affine 

Weyl group W(gn) = W{An
l)) = ( p r , S 0 , S U . . . , S n ) . 

Theorem 2.2. IfT<ja\p) ^ 0, then for any w G W(An
1]), the relations 

wT\a\p) = T*.a\w(p)) and £Jo)(io(p)) = Ef\p) are valid. 
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A state p e B is called evolvable if it is (a, j')-evolvable for any (a, j). In 
Conjecture 2.1, we expect that the convergent limit T ^ equals a translation 
in W(An'). Compared with Ti in [13], the family {T^o)} here is more general 
and enjoys a larger symmetry W(An). Define the subset of B by 

P(m) = {peB\p: evolvable,Ef\p) = ^min(j,k)m{^}. (2.1) 
fe>i 

Pictorially, m = {m^l\ ..., m^n') is the n-tuple of Young diagrams and E^ 
(resp. rrv£') is the number of nodes in the first k columns (resp. number of 
length k rows) in m^a\ We call m the soliton content. 

Remark 2.1. P(m) is W(./44 )-invariant due to Theorem 2.2. 

Given p £ P(m), TJ (p) G P(m) is not necessarily valid. For instance 

p = 112233 e P(((22),(2))) C B = (B1-1)®6 but T[2\p) = 213213 is not 

evolvable since {T[2))2{p) = 0. On the other hand one can show 

Proposition 2.1. If p E P(m) and (7Ja))'(p) ^ 0 for any t, then 

(TJo))'(p) e P{m) for any t. 

Let W, Aa,aa be the Weyl group, the fundamental weights and the simple 
roots of An, respectively. We specify pj = pj(m) by (3.4) and set 

n 

A(m) = ^ p W A a , H={(a,j)\l<a<n,jeZ>1,mf)>0}. (2.2) 
a = l 

Conjecture 2.2. P(m) ^ 0 if and only if Pj > 0 for all (a,j) € H. 
{wtp | p € P{m)} = WX(m). 

The claim on the weights is consistent with the W(A„ )-invariance of P(m). 
Here is an example of time evolutions in B = B1'1 ® B1,1 ® B1'3 <g> 

B1'1 ® B1'1 <g> B 1 , 1 <g> B 1 , 2 with W ( ^ 1 } ) symmetry. The leftmost column is 
po,T^)(po),T^2)T^){p0) and T^T^T^(pQ) from the top to the bottom. 
At each time step, the states connected by the Weyl group actions So a n d Si 
are shown, forming commutative diagrams. (• signifies ®.) All these states 
belong to P(((3111), (21), (1))). 

2 • 1 • 233 • 4 • 1 • 2 • 12 S 2 • 4 • 233 • 4 • 1 • 2 • 24 & 1 • 4 • 133 • 4 • 1 • 2 • 14 
1 - 2 - 1 2 3 - 3 - 4 - 1 - 2 2 4 • 2 • 234 • 3 • 4 • 1 • 22 4 • 1 • 134 • 3 • 4 • 1 • 12 
1 - 2 1 1 2 - 3 - 2 - 3 - 2 4 1 • 2 • 244 • 3 • 2 • 3 • 24 1 • 2 • 144 • 3 • 1 • 3 • 14 
2 - 3 - 1 1 2 - 4 - 2 - 3 - 1 2 2 • 3 • 244 • 4 • 2 • 3 • 12 2 • 3 • 144 • 4 • 1 • 3 • 11 
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Remark 2.2. Let Rj(l <j<L—l) be the combinatorial R that exchanges 
the j - t h and (j + l)-st components in B = BTl'h ® • • • ® BrL'lL and ir(bi ® 
...(g) feL) = hh ® b\ <8> • • • ® &L-I- Together with i?0 = 7r_1iii7r, they act on 
U s e 6iB r i l ' ' ' 1 ®- ' -®-B r ' i ' ' , t as the extended afnneWeyl group W{Ai/_i) = 

{IT, -RO, • • •, RL-I)- Theorem 2.2 is actually valid for w £ W{gn = An ) x 
W{A\J_X) as in [8]. In the homogeneous case (r\,l\) = ••• = {TL,IL), the 
W(i4^ij) symmetry shrinks down to the 7r-symmetry, which is the origin 
of the adjective "periodic". 

3. Bethe ansatz at q = 0 

Eigenvalues of row transfer matrices in trigonometric vertex models are 
given by the analytic Bethe ansatz [15, 12]. Let Qr{u) = YlksmhiT{u — 
V—ltij. ) be Baxter's Q-function where {u\ } satisfy the Bethe equation 
eq.(2.1) in [11]. We set q = e~27rfi and C = e27ru. For the string solution 
([11] Definition 2.3), the relevant quantity to our Tj is the top term of 
the eigenvalue A,(r)(u) (cf.[12] (2.12)): 

v ' jot 

Here z^ is the center of the a-th string having color a and length j . Denote 

by rrij the number of such strings. We call the data m = {rrVj) the string 

content. The product in (3.1) is taken over j e Z>i and 1 < a < m{p. E\r) 

is given by the same expression as in (2.1) as the function of m. At q = 0 
the Bethe equation becomes the string center equation ([11] (2.36)): 

4b) 

(b,k)€H 0=1 

Aaja,bkP = Sab5jkSal3{Pj + TU^) + Cab m i n ( j , fe) - SabSjk, (3.3) 

L 

vf* = ^2minUJi)5o.ri - ^2 Cabmin(j,k)mk
b), (3.4) 

*=i (b,k)eH 

where (Cab)i<0,b<n is the Cartan matrix of An. To avoid a notational com
plexity we temporally abbreviate the triple indices aja to j , bk/3 to k and 
accordingly zkl to zk etc. Then (3.1) and (3.2) read 
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where pk is given by pk = 5br min(fc, I) for k corresponding to bkfi, and Sj is 
an integer. Note that Aj^ = Akj. Suppose that the q = 0 eigenvalue satis
fies (A\r))rir) = ±1 for generic solutions to the string center equation *. It 
means that there exist integers £j such that V • ZjAj,k = 'Pi Pk, or equiv-
alently £,• = P ;

( r ) dfef$, where A[j] denotes the matrix A = (Ajtk) with its 
j-th column replaced by t(pi,p2, • • •)• In view of the condition V£j G Z, the 
minimum integer allowed for P /

( r ) is v[r) = LCMfl, |Jfc'det^ffc]) • w h e r e 

LCM stands for the least common multiple and Û . means the union over 
those k such that A[k] / 0. Back in the original indices, the determinants 
here can be simplified (cf. [11] (3.9)) to those of matrices indexed with H: 

(b,k)€H l ' ' 

where the matrix F = (Faj}bk)(a,j),(b,k)eH is denned by 

Faj,bk = SabSjkP^ + Cab min(j, k)m{^. (3.7) 

The matrix F[b, k] is obtained from F by replacing its (b, k)-th column as 

F[b,kUcm = {F^Cm fcm> *<>•*>' (3.8) 
[Sar min(j, I) (c, m) = (6, k). 

The union in (3.6) is taken over those (b, k) such that det F[b, k) ^ 0. 
The LCM (3.6) can further be simplified for A^\r = l,\/n = VZ» = 1. 

We write pj ' just as pj and parameterize the set H = {j G Z>i | rrij > 0} 
as H = {(0 <) J\ < ••• < Js}. Setting ik = min(J/., 1) and io = 0, one has 

P,(1) = LCM (l, [\'.Pik+lP\ ) , (3.9) 
V kZ0(

lk+i-lk^J 
where 0 <t < s — l i s the maximum integer such that it+i > it-

Let us turn to another Bethe ansatz result, the character formula called 
combinatorial completeness of the string hypothesis at q = 0 [11]: 

L 

IJch£ r i > ' ' =^ f i (m)e A ( m ) , (3.10) 

TT 1 (V\ +m) ' -1\ 

(a,j)GH mj " ""j 

"Pj here should not be confused with the symbol in (3.4). 
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where (*) = s(s-!)••• (s-t + \)/t\ and chBr'1 is the character of Br'1. 

A(m), pf] and F are defined by (2.2), (3.4) and (3.7). The sum in (3.10) 

extends over all rnf £ Z>o canceling out exactly leaving the character 
of B. (3.10) and (3.11) are the special cases of eq.(5.13) and eq.(4.1) in 
[11], respectively. fi(m) (denoted by R(v,N) therein) is the number of off-
diagonal solutions to the string center equation with string content m. It 
is known ([11] Lemma 3.7) that £l(m) £ 7L>\ provided that Pj > 0 for all 
(a,j)€H. 

4. Dynamical period and state counting 

In (2.1), the soliton content m = (m? ) is introduced as the conserved 
quantity associated with the commuting transfer matrices. One the other 
hand, the rrv"' in the string content m = {rrij) is the number of strings 
of color a and length j in the Bethe ansatz in section 3. From now on we 
identify them motivated by the factor C,~Ei in (3.1) and some investigation 
of Bethe vectors at q = 0. In view of Conjecture 2.2, the data of the form 
m = {rrij ) is defined to be a content if and only if p)"1' > 0 for all (a, j) G H. 
Thus d e t F > 0 and A(m) in (2.2) is a dominant weight for any content m. 

Conjecture 4.1. Ifp e P(m) and (T,(r))'(p) ^ 0 for any t, the dynamical 

period ofp under T^ (minimum positive integer t such that (Tj )*(p) = p) 

is equal to 7>Y (3.6) genetically and its divisor otherwise. 

In the situation under consideration, the whole Tj orbit of p belongs to 

P(m) due to Proposition 2.1. Naturally we expect (Aj ) p ' = 1, which can 

indeed be verified for A[ '. Conjecture 4.1 has been checked, for example 

in A{
3
1] case, for B = (B1'1)®3 ® B2'2 and B2'1 ® B2'1 ® B3-1 ® B3-2. 

Let us present more evidence of Conjecture 4.1. To save the space, • = <g> 
is dropped when B = (B1'1)®L. In each table, the period under Tj with 
maximum I is equal to that under T<^ . 

A^\ state = 1221121122221, content = ((321)) 

(r,l) 

(1,1) 

(1,2) 

(1,3) 

1, 

1, 

1, 

LCMof 

13, 
91 
3 ' 

91, 

13, 
91 
1 6 ' 

273 
16 ' 

13 
91 
16 

273 
107 

= period 

13 

91 

273 
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/ i i •, STj£LlG 122 • 112 • 12 • 1222 • 2 • 11111 • 1122 • 111, content = ((4321)) 

(r,l) 

(1,1) 

(1,2) 

(1,3) 

(1,4) 

1, 

1, 

1, 

1, 

2 

7, 

14, 

21, 

LCMof 

7- 21 
2 ' z l ' 
7 ^ 
' ' 4 ' 21 63 
2 ' 8 ' 

42 
21 
2 

126 
29 

= period 

2 

42 

42 

126 

state = 134 • 34 • 1 • 134 • 23 • 1 • 13, content = ((432), (31), (1)) 

(r,l) 

(1,1) 

(1,2) 

(2,1) 

(2,2) 

(2,3) 

(3,1) 

1, 

1, 

1, 

1, 

1, 

1, 

380 
39 ' 
190 
39 ' 
190 
13 ' 
76 
5 ' 
95 
6 ' 

380 
13 ' 

95 
6 ' 

95 
1 2 ' 
95 
4 ' 

38 
3 ' 
95 
1 1 ' 
95 
2 ' 

LCMof 
95 
6 ' 

95 
1 2 ' 
95 
4 ' 

38 
3 ' 

95 
1 1 ' 
95 
2 ' 

380 
31 ' 
190 
31 ' 
190 
137 ' 
76 
4 1 ' 
95 
3 4 ' 

380 
137 ' 

380 
27 ' 
190 
27 ' 
190 
9 ' 

76 
2 1 ' 
95 
4 8 ' 

380 
9 ' 

380 
29 
190 
29 
190 
73 
76 
31 
95 
41 

380 
263 

= period 

380 

190 

190 

76 

95 

380 

state = 233 
12 
23 
34 

11 
34 • 1 , content = ((3), (3), (2)) 

(rJ) 
(1,1) 

(1,2) 

(1,3) 

(2,1) 

(2,2) 

(2,3) 

(3,2) 

1, 

1, 

1, 

1, 

1, 

1, 

1, 

LCMof 
n 
2 ' 
11 
4 ' 
11 
6 ' 

11, 
11 
2 ' 
11 
3 ' 

11, 

11, 
11 
2 ' 
11 
3 ' 

33 
7 ' 

33 
1 4 ' 
11 
7 ' 

33 
7 ' 

22 

11 
22 
3 

66 
7 

33 
7 

22 
7 

33 
20 

= period 

22 

11 

22 

66 

33 

22 

33 

Here, content=((3111), (44), (2)) for example means that m\ (1) 

Q (1) 

3, my 
= ml3 — l ,mi 2^=2 and the other my'''s are 0. 

2 — +,..*4 — - ™ ~ * ~ ~ ~ * . . . j 

Let us turn to another application of the Bethe ansatz results (3.10) 
and (3.11). We introduce T{P{m)) = Ua=iUi> i{^ o ) (p ) I P e P(m)}, 
which is the subset of B consisting of all kinds of one step time evolutions 
of P(m). Under Conjecture 2.1, any state p G P{m) is (a, j)-evolvable 
for j sufficiently large. Thus from Proposition 2.1, p is expressed as p = 
(T^a))k(p) for some k, showing that T(P(m)) D P(m). In general T{P{m)) 
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can contain non-evolvable states which do not belong to P{m) 

Conjecture 4.2. For any content m such that T(P(m)) = P(m), the 
following relation holds: 

\P{m)\ 
fl(m) 

\W\{m)[ 
(4.1) 

In view of Remark 2.1 and Conjecture 2.2, the right hand side is the number 
of states in the periodic An' automaton having the content m and a fixed 
weight. Thus it is equal to #{wtp = A(m) | p £ P(m)}. In case T(P(m)) 
P(m), we expect that |P(m)|/|H /A(m)| is a divisor of Q(m). 

D 

Let us present two examples of Conjecture 4.2. In the periodic A3 
automaton with B = B1'2 ® B1'1 ® B1'2 ® B1'1, there are 1600 states among 
which 824 are evolvable. They are classified according to the contents m in 
the following table. 

m 

(0,0,0) 

((i),0,0) 

((11), 0,0) 

((2), 0,0) 

((21), 0,0) 

((3), 0,0) 

((H),(1),0) 
((22), (2), 0)* 

«21),(1),0) 

((HI) , (11), (1)) 
((211), (11), (1)) 

A(m) 

(6,0,0,0) 

(5,1,0,0) 

(4,2,0,0) 

(4,2,0,0) 

(3,3,0,0) 

(3,3,0,0) 

(4,1,1,0) 

(2,2,2,0) 

(3,2,1,0) 

(3,1,1,1) 

(2,2,1,1) 

\WX{m)\ 

4 

12 

12 

12 

6 

6 

12 

4 

24 

4 

6 

\P(m)\ 

4 

48 

24 

72 

24 

36 

96 

24 

432 

16 

48 

n{m) 
1 

4 

2 

6 

4 

6 

8 

12 

18 

4 

8 

In the second column, (Ai, A2, A3, A4) means A(m) = (Ai — A2)Ai + (A2 — 
Aa)A2 + (A3 — A4)A3. In the last two cases, the subsets of P(m) having the 
dominant weight A(m) are given by 

{11-2-13-4, 12-3-14-1, 13-4-11-2, 14-M2-3} for m = ((111), (11), (1)), 

{11-2-23-4, 12-2-13-4, 12-3-24-1, 13-4-12-2, 

14-1-22-3, 22-3-14-1, 23-4-11-2, 24-M2-3} for m = ((211), (11), (1)). 

In the case of B = B2'1 <g> B2'1 <8> B2'2, there are 720 states among which 
518 are evolvable. 
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m 

(0,0,0) 

(0,(1), 0) 

(0,(n),(i)) 

(0,(2),0) 

((i),(n),0) 

((1),(11),(1)) 

((1),(21),(1)) 

((2), (22), (2))* 

A(m) 

(4,4,0,0) 

(4,3,1,0) 

(4,2,1,1) 

(4,2,2,0) 

(3,3,2,0) 

(3,3,1,1) 

(3,2,2,1) 

(2,2,2,2) 

\W\{m)\ 
6 

24 

12 

12 

12 

6 

12 

1 

\P(m)\ 

6 

72 

36 

48 

36 

72 

240 

8 

fi(m) 

1 

3 

3 

4 

3 

12 

20 

32 

The assumption T(P(m)) = P(m) of the conjecture is valid for all the 

contents except ((22), (2),0) and ((2), (22), (2)) marked with *. 
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1. Introduction 

In this paper, we focus on the L2-Alexander invariant defined in [13, 14] 
from the twisted Alexander invariant point of view. The Alexander poly
nomial is a knot invariant discovered by J. W. Alexander [1] in 1928. The 
Alexander polynomial remained the only known knot polynomial until the 
Jones polynomial was discovered by V. Jones [8] in 1984. It is well-known 
that the Alexander polynomial plays an important role in the theory of 
knots. 

The paper is organized as follows. In §1, we review the twisted Alexan
der polynomials. The necessary background on the L2-invariant is given in 
§2. An L2-analogue of the Alexander-Conway invariant for knots is pre-
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sented in §3. A possible relation between our L2-Alexander invariant and 
the volume conjecture is discussed in the last section. 

Let L be a link in S3 with /i(L)-components and exterior X = S3\L. 
Let P be a base point of X and p : X —> X be the maximal Abelian covering 
space with m(X) A H^X) S* Z^L\ The module fli(X.Z) depends only 
on the fundamental group of X. Any generator of the ideal order Hi(X, Z) 
is called the Alexander polynomial AL(£) of n\(X) (see [1]). 

A twisted version of the Alexander polynomial has been introduced and 
studied first by Lin [15] from the Seifert surface point of view. Wada defined 
twisted Alexander polynomial via the free calculus method for Wirtinger 
presentations of knots in [22]. Using the twisted homology of the maximal 
Abelian covering space, Kirk and Livingston [11] defined a version of twisted 
Alexander polynomial via the ideal order in certain module. 

Let p be a representation of n\(X) on a finitely generated free module 
V over some unique factorization domain R. Choosing a basis for V with 
dim,R V = N, p can be realized as a homomorphism p : TTI(X) —+ Aut(V) = 
GLN(R)- The associated ring homomorphism is 

p : ZTTI(X) -> ZGLN(R) = MN(R), 

where MN(R) is the matrix algebra. 
Let {xi,--- ,xn\r\,--- ,rm} be a presentation of iri(X). The twisted 

version of Alexander polynomials defined in [22] is by working on the fol
lowing group ring homomorphism 

ZFn % Z7n(X) ^ MN{R) ®ZG^ MN(R[tf\ • • • ,t%L)]). (1.1) 

Denote $ = (p®a)oi/j and R[G] = R[tf\ ••• , t^L)}. The matrix $(§j£)(l < 
i <n,l < j <m) is called the Alexander matrix oiwi(X) associated to the 
representation p. The matrix $(§^-) is a presentation matrix of Hi(X, P) 
as Mx(R[G])-module. The twisted Alexander module of L associated to p 
is the R[G}~module A(L,p) = H1{X,P;R[G]N). 

For a Wirtinger presentation of n\(X) of the knot complement in 5 3 , 
one has TTI(X) = {x\, • • • ,xn\r\, • • • ,rn-\) and hence each matrix Mj is a 
square matrix. So 

detMj , . 
A L , P ( * I , • • • , t,{L)) - d e t ( $ ( a . . ) _ I d ) - (1-2) 

where the matrix Mj is a (n —1) x (n — 1) minor of the Jacobian $(-^-)nxn 
for the Wirtinger presentation of a knot group. 
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The twisted Alexander polynomial ALIP is independent of the choice 
of the presentation of TTI(X) by Theorem 1 and Theorem 2 of [22]. The 
definition works for any finitely presentable group (see [22]). In general, the 
twisted Alexander polynomial is a rational function. 

Note that both the Kinoshita-Terasaka knot and the Conway's 11 cross
ing knot have the same trivial Alexander polynomial and different twisted 
Alexander polynomial by [22]. Kitano [12] interprets these twisted invari
ants in terms of Reidemeister torsions along the lines in [18]. 

2. L2— invariants 

Let T be a finitely generated discrete (infinite) group. Let l2(V) be the 
standard Hilbert space of squared summable formal sums over T with com
plex coefficients. An element in l2(T) can be written as a = Ylyer a-i7 with 
a7 g C and X L e r |a-y| < +oo. If a — ̂ 7 e r a 77 an(^ ^ = S7er ̂ il a r e two 
elements in 12{T), then their inner product is given by (a, b) = ^ 

f- -p (Jj/y U-y . 

The left multiplication with elements in T defines a natural unitary 
action of T on / 2 ( r ) . The group von Neumann algebra Af(T) is the algebra 
of T-equivariant bounded linear operators from /2(r) to l2(T). The von 
Neumann trace on Af(T) is defined by 

T r T : A T ( r ) ^ C , / ~ < / ( e ) , e ) , (2.1) 

where e € T C l2(T) is the unit element. The right multiplication in
duces a natural action of T on l2(T) commuting with the left multiplication 
of T. Thus T C Af{T). Moreover, for any 7 € V C M(T), TrT[7] = 1 
if 7 = e and TrT[7] = 0 if 7 ^ e. For any positive integer n, set 
/2(r)N =l2(T)(B---®l2(T). 

v v ' 
n 

We call £2(r)ln! a free A/"(r)-Hilbert module of rank n. A morphism 
between two free A/"(r)-Hilbert modules is a T-equivariant bounded linear 
map between them. Let / : l2(T)^ —> l2(T)^ be such a morphism. Let 
ej (i = 1, • • • , n) be the unit element in the z—th copy of Z2(r) in / 2 ( r ) ' " ' . 
Then we can extend the von Neumann trace in (2.1) to define 

n 
TrT[/] = ^ ( / ( e i ) , e i ) . (2.2) 

i=\ 

The Fuglede-Kadison determinant DetT (/) of / can be defined as fol
lows: 
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(i) If / is invertible and /* is the adjoint of / , then define (cf. [4, 
Definition] and [16, Lemma 3.15 (2)]) 

DetT(/) = exp Q l r T [log ( /* / ) ] ) ; (2.3) 

(ii) If / is injective, then define (cf. [4, Lemma 5] and [16, Lemma 3.15 
(4), (5)]) 

D e t T ( / ) = lim \ /Det r ( / • / + e) = ^DetT ( /*/)• (2.4) 
£—•0+ 

(iii) If/ : J2(r)'"l —» Z2(r)[™l is an invertible morphism, then there exists 
a C 1 path fu, u € [0,1], of invertible morphisms such that /o = / , / i = Id, 
and (cf. [4, Theorem 1 and Lemma 2]), 

log (DetT (/)) = - R e ( j f TrT f ' 1 ^ du) . (2.5) 

Example: Let 7 £ T be of infinite order, and |i| < 1. It is clear that 
Id - £7 G Af(T) is invertible and Det r(Id - £7) = 1 by (2.5) (cf. [13]). 

(C„ d) : 0 - Cn h C„_i V • • • ^ Co -» 0, (2.6) 

Let (C*, 9) be a finite length A/"(r)-chain complex 

( C , <9) : 0 —> C„ -3 Cn-i -4 • • • —> Co 

where each Cj (0 < i < n) is a (finite rank) A/"(r) free Hilbert module. 
Assume that (C*,<9) is weakly acyclic: ker(9j) = Im(<?i_i), 0 < i < n. Let 
9* : Cj_i —> Cj be the adjoint of 9» : C* —> C»_i. Then <9i<9* : Im(<9;) —> 
Im(9j) is injective (0 < i < n). 

We call (C«,9) is of determinant class if 9j9* : Im(3j) —> Im(dj) (0 < 
i < n) is of determinant class (i.e. DetT(djd*| ) > 0). In this case, 

the L2—Reidemeister torsion of (C*,<9) is defined to be a real number 
T(2)(C»,<9) given by (cf. [16, Definition 3.29]) 

logr(2>(C.,3) = - i f > l ) M o g D e t T ( ^ j ^ y ) . (2.7) 
i=0 

Let p : 7Ti(X) —> GL{H) be an A/"(r)-linear representation of T = 
7ri(X) on a (finite rank) free Af(T) Hilbert module, where X is a finite cell 
complex. Let X be the universal covering of X. Thus the chain complex 
(C*(X) <g> H, d) induces canonically a chain complex (C*(X, Hp), dp) in the 
sense of (2.6) with C,(X, Hp) = (C*(X) ®Wl(x),P # ) • 

If (C„(X,Hp),dp) is weakly acyclic and of determinant class, then its 
L2-Reidemeister torsion T^2\C^{X,Hp),dp) as in (2.7) is defined. If p : 
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TTipQ -* GL(H) is unitary, then TW(C*(X,Hp),dp) is a well-defined 
piecewise linear invariant. 

Note that the L2-Reidemeister torsion detects the unknot by [16, The
orem 4.7 (2)]. 

3. An L2—Alexander—Conway invariant for knots 

Combining the methods in §1 and §2, we provide the construction of an 
L2-Alexander-Conway invariant for knots in this section. See [13,14] for 
more details. 

Let K C S3 be a knot. Let P(r) — {xi,--- ,a;fc|ri,--- ,rk-i} be a 
Wirtinger presentation of V = TTI(S3 \ K). Let <f> : Fk = {xi, • • • ,Xk} —> T 
be the canonical map from the free group Fk to T. 

Define a to be the canonical abelianization a : T —> U{\) with a(xi) = t 
for 1 < i < k. Let GL(l2(T)) denote the set of invertible elements in Af(T). 
Let pr : T —» GL(l2(T)) denote the fundamental representation of T, which 
is given by the right multiplication of the elements in T. The tensor product 
representation p ® a induces a ring homomorphism of the integral group 
rings 

p^lfa : Z[T] -» Af(T) ® Z[t±l] c N{T). (3.1) 

Let * = (pr ®a)o(f> : Z[Fk] —> N(T) be the composition of the ring 
homomorphisms. Consider the morphism 

4 T ® « : ?(T)[k-1] -> l2(T)W (3.2) 

which when written in the (k — 1) x k matrix form, the (i, j)-component is 
given by 

^pr®a,(i,i) = * ( f ^ ) € W ) ® Z ^ 1 ] C AT(D, (3.3) 

where ^ is the standard Fox derivative. 

We call Apr®a the L2-Alexander matrix of the presentation P(T) asso
ciated to the fundamental representation pr and the representation a. In 
[13], we proved the following proposition. 

Proposition 3.1. (1) ^(XJ — 1) G N(T) is injective and has dense image 
for any 1 < j < k. 

(2) If one of the A3
pr^a 's, 1 < j < k, is injective, then every Aj

pr^a, 
1 < j < k, is injective. 
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(3) For any 1 < j < j ' < k, one has 

DetT ( 4 r 8 a ) Det r (tf (ay - 1)) = DetT (A^J DetT (*(Xj - 1)). 

(3.4) 

(4) DetT (tf ( ^ - 1)) = 1 for 1 < j < k 

(5) A(
K'(t) = Det r (Apr0a) is independent of the choice of the 

Wirtinger presentation of the knot K. 

Thus we define A^- (i) to be the L2-Alexander invariant of the knot K 
i n S 3 . 

When t = 1, AK\t) has been studied by Luck (see [16, Theorem 4.9]), 
who shows that A^-^l) is equivalent to the L2-Reidemeister torsion of 
S3 \ K. In [13], we identify A^}(i) with t £ U(l) as certain twisted L 2 -
Reidemeister torsion of S3 \ K (see [13, Proposition 5.1]). In view of [22, 
Section 5], the above construction can also be applied to links. We also 
proved a rigidity result for the U(l) twisted L2-torsion on a knot comple
ment in [13, Theorem 6.1]. 

By considering a : Hi («S3 \ if) —> C* with a(h) = t, we can prove that 
DetT (^>r,g,Q) is well-defined up to the multiplicative group {|£|p}pgz (see 
[13]). However, one can resolve this {|i|p} ambiguity through the following 
theorem. 

Theorem 3.2 (Li-Zhang 2005 [14]). The quantity 

S*)m -A^m-* Detr ( A U) Det- O W O 
K [ ) Aj max{l, | i |} ' m a x f l , ^ - 1 } 

does not depend on the choice of the Wirtinger presentation ofT. Moreover, 

it depends only on \t\. 

Definition 3.3. The term AK (t) in the above theorem is called an L 2 -
Alexander-Conway invariant of the knot K. 

By the rigidity result in [14], this definition coincides with [13, Definition 
3.5] for t G U(l). 

Example. Let K = 4i be the figure eight knot with its Wirtinger pre
sentation P(T) = (x,y\zxz~1y~1), where z = x~1yxy~1x~1. Then one 
has 

(i) If |*| > 4, then A ^ (t) = Vt; 
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(ii) If \t\ = 1, then A™(t) = exp ( V ° ' ^ 4 l ) ) ~ exp ( £ • 2.029) + 1. 

Thus A ^ (£) is a non-trivial deformation of the hyperbolic volume of 

4i. It would be interesting to study the behavior of AK
K'(t) on R*. 

Now let /? G Bfc be a braid representative of the knot K. By Artin's 
theorem [3], the knot group V admits a presentation 

(xi,...,Xk\P{xi)x1l = ••• = ^ ( i f c - i ) ^ ! = l ) . 

By proceeding similarly as in the Wirtinger presentation case, one can de
fine the L2-Alexander matrix denoted now by Apr®a, and define an L 2 -
Alexander-Conway invariant by, for t G C*, 

:(2) A ^ ( i ) 
\ max{l, | i |} max{l , |£ | - 1 } 

Theorem 3.4 (Li-Zhang 2005 [14]). (%) The L2-Alexander-Conway in-
variant AK (t) does not depend on the braid representative (3 for the knot 
K. So it defines an invariant for K. 

(ii) For t G U(l), A%\t) = A%\t) ( = A<?>(1)) . 

Theorem 3.4 indicates the interactive relation of our L2-invariant on the 
braid representatives of the knot K. It can be viewed as an L2-analogue of 
the Burau theorem [3, Theorem 3.11]. It is an interesting problem to answer 
our expectation A ^ ( i ) = A^}(i) . Note that A<£>(t) = A^}(i) = t1'2, 
A^(t) = A^(t) = ^ 2 for \t\ > 4 and Ag>(l) = A £ > ( 1 ) = 1. 

4. The volume conjecture 

The volume conjecture given by Kashaev [9] is derived from the theory of 
quantum dilogarithm to build a possible relation between the combinatorial 
TQFT to quantum 2 + 1 dimensional gravity. H. and J. Murakami in [19] 
reinterpreted the Kashaev invariant in [9] as a special case of the colored 
Jones polynomial associated with the quantum group SUq(2) evaluated at 
q = e2Wiv T n e volume conjecture for any knot K in S 3 can be stated as 
the following, 

lim l°g]J"{K>q)l=±Vol(S>\K), 
N^oo N 27T V X ' 
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where the volume is the simplicial volume. The volume conjecture is true 
for torus knots [10] and the figure eight knot [20]. See also [5,7] for related 
topics. 

By [13, Proposition 5.1 and Theorem 6.1], the volume conjecture can 
be restated as follows (cf. [16, Conjecture 4.8]), 

lim 
N->+oo 

JN ( K, exp ( ——— ,(2) A ^ ( l ) . (4.1) 

Using the 3-dimensional Chern-Simons theory with complex gauge 
groups 51/2 (C), Gukov [6] derived a generalized volume conjecture 

By comparing (4.1) with the Melvin-Morton conjecture (the Melvin-
Morton conjecture was proved formally in [21] and rigorously in [2]), it 
seems plausible to view the volume conjecture as a kind of L2-analogue 
of the Melvin-Morton conjecture. This fits with the picture outlined by 
Gukov in [6]. In particular, the rigidity property in [13, Theorem 6.1] fits 
with the form of the generalized Melvin-Morton conjecture stated in [6], 
where the hyperbolic torsion in the right hand side of [6, (6.30)] (which 
should play a role of the L2-torsion, or the L2-Alexander invariant here) 
does not contain a (unitary) deformed parameter. 

We would like to end our article by listing some natural questions. 
(Ql) Note that the generalized volume conjecture in (5.12) of [6] can 

be thought as a parametrized volume conjecture via the zero locus of the 
A-polynomial. Is our invariant AK (t) related to the volume Vol(p) for 
p : r —» SL,2(C) in the zero locus ? 

(Q2) Aj£ (t) is upper semi-continuous with respect toteC*. Whether 
it is a continuous function or with only first kind of discontinuity ? Whether 
A ^ i ) 7^0 for all knots? 

(Q3) It would be interesting to give a topological proof of Liick-Schick's 
result in [17], identifying A}^(1) with the simplicial volume of S3 \ K, up 
to a constant scalar. Is there a direct proof by passing Liick-Schick's result 
? 

(Q4) Whether there is a knot polynomial whose Mahler measure equals 
to the L2-Alexander invariant A^- (1) (or equivalently, the L2-torsion of 
the knot complement) ? This is Question 8.1 of [13]. 
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In this lecture, we present a series of existence theorems for the locally concen
trated static solutions arising as the energy minimizers in the Faddeev model 
and the Skyrme model in relativistic quantum field theory. 

1. The Faddeev knots 

Brief Review. For mathematicians, knot theory has long been a theory 
of classification of knots by means of combinatorics and topology (Tait, 
Alexander, Jones, Witten, Vassiliev). Recently, there is considerable inter
est in realizing knots as the solution configurations of suitable quantum 
field theory models. Of these, the most interesting one that promises to 
provide a broad spectrum of knot phenomena is the Faddeev quantum 
field theory model n in which the knots are energy-minimizing solitons 
and characterized by the Hopf charge which is a topological index. Using 
computer simulation, Faddeev and Niemi 13,12 first produced a ring-shaped 
(unknotted) Hopf charge one soliton. Shortly after the seminal work of Fad
deev and Niemi, a more extensive computer investigation was conducted 

•Lecture at the 23rd International Conference on Differential Geometry Methods in 
Theoretical Physics, Nankai Institute of Mathematics, Tianjin, China, August 20 - 26, 
2005 
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by Battye and Sutcliffe 2~4 who performed fully three-dimensional, highly 
convincing, computations for the solution configurations of the Hopf charge 
Q from Q = 1 up to Q = 8 and found that, for Q = 1,2,3,4,5, the energy-
minimizing solitons are ring-shaped and higher charges cause greater dis
tortion, and for Q = 6,7,8, the solitons become knotted or linked. In par
ticular, the trefoil knot appears at Q = 7. The main aim of this talk is to 
present a series of existence theorems for such knotted solitons. 

The Faddeev Model. Recall that, in normalized form, the action den
sity of the Faddeev model 1 3 ' n ' 2~ 4 over the standard (3 + l)-dimensional 
Minkowski space of signature (-| ) reads 9Mn • d^n — ^Fllv{n)F^v{n), 
where the field n = (n\,ri2,nz) assumes its values in the unit 2-sphere, i.e., 
n2 = n2 + n2 + nf, = 1, and FM!/(n) = n • (dMn A d„n). Since n is parallel 
to <9Mn A dvn, it is seen that FliV(n)Fftv(ii) = (d^n A dvn) • (d^n A dun), 
which may be identified with the well-known Skyrme term 21_24>28 when 
one embeds S2 into S3 ~ SU(2). Hence, as observed by Cho 7, the Faddeev 
model may be viewed as a refined Skyrme model and the solution config
urations of the former are the solution configurations of the latter with a 
restrained range. In what follows, we shall only be interested in static fields 
which make the Faddeev energy 

E(n)= f { £ |d,n|2+ J2 FZe(n)}dx (1.1) 

finite. The finite-energy condition implies that n approaches a constant 
vector rioo at spatial infinity (of R3). Hence we may compactify R3 into 5 3 

and view the fields as maps from S3 to S2. As a consequence, we see that 
each finite-energy field configuration n is associated with an integer, Q(n), 
in 7T3(52) = Z. In fact, such an integer <5(n) is known as the Hopf invariant. 

The Faddeev Minimization Problem. The Faddeev knots are the so
lutions to the following topologically constrained minimization problem 

Em = inf{£?(n) | E(n) < oo, Q(n) = m}, (1.2) 

where m is an integer. The computer simulations in 13>2-4 are for m = 
1,2, • • • ,8 for which the problem (1.2) is truncated over a finite large box 
which "approximates" the full space R3. 

Main Difficulty. In his ICM 2002 address in Beijing, Faddeev 12 proposed 
the above problem to the mathematicians and noted that the main difficulty 
involved is the lack of compactness. In fact, this difficulty is not isolated 
and arises also in the general existence problem for topological solitons in 
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other quantum field theory models. For example, recall that Belavin and 
Polyakov 5 were able to construct all static solitons characterized by an ar
bitrary topological charge (the Brouwer degree) for the cr-model modeling 
the spin vector orientation for a planar ferromagnet. The four-dimensional 
extension of this construction is of course the well-known resolution 19 of 
the classical Yang-Mills instantons realizing again any prescribed topolog
ical charge (the second Chern number). The common feature of these two 
soluble models is that they are both conformally invariant field theories. 
When conformal invariance becomes invalid, the above-described complete 
solvability may not be available. For example, except in the critical phase 
14 between two types of superconductivity, people have not been able to 
establish for the Ginzburg-Landau theory on M2 the existence of an energy 
minimizer realizing a given quantized flux (the first Chern number), and 
a similar situation happens for the Chern-Simons theory 8 ,2?; except in 
the BPS limit 6>18>25, people have not been able to establish the existence 
of a Yang-Mills-Higgs monopole of any monopole number (the winding 
number); although there have been some works on the existence of energy-
minimizing unit-charge Skyrme solitons 9-1°.2 0 '1 7

! the proofs are problematic 
unfortunately. 

Existence Theory. Now we state our main existence theorems for the 
fundamental minimization problem (1.2). First recall that the lower bound 

E{n) > C\m\3/4 (1.3) 

was derived a long time ago by Vakulenko and Kapitanski 26. This lower 
bound ensures the existence of an integer m o ^ O such that 

£ m o = m i n { £ m | m e Z \ { 0 } } . 

For such mo, we have 

Theorem 1.1. The problem (1.2) with m = m® has a solution. 

Furthermore, we have 

Theorem 1.2. There exists an infinite subset S of the set Z of all integers 
so that for any m € § the problem (1.2) has a solution. 

Although we do not know how big the set § is or whether § ^ Z, we 
can make the above statement more precise as follows. 

Theorem 1.3. For any m G Z, there is a decomposition 

m = mi H + me,, m s e Z , s = l,••-,£, (1.4) 
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so that the following sub-additivity relation 

Em > Emi + h Eme (1.5) 

holds. In fact, all the integers mi , - - - ,m< in (1-4) may be chosen to be 
members of the set S. Besides, the sublinear growth (upper) bound 

Em < C|m|3 / 4 . (1.6) 

is valid. Here, in (1.6), C is a universal positive constant. 

The above result may be interpreted physically as follows: If Em is 
viewed as the mass of a particle of charge m and Emi, • • • , Eme are the 
masses of constituent particles or substances, then (1.4) is a charge conser
vation law and (1.5) says that the mass of the composite particle is greater 
than or equal to the sum of the masses of its constituents or substances 
because possible extra energy may be needed for the constituents or sub
stances to form a bound state and, as a result, the composite particle may 
look "heavier". For this reason, we may call (1.5) "the Substantial Inequal
ity" , which will be seen to be a crucial technical ingredient of our method. 

Comparing (1.3) and (1.6), we see that the sharp sublinear growth esti
mate Em ~ |m|3/4 holds asymptotically for a large Hopf charge \m\. It will 
be seen that the upper bound (1.6) is another crucial technical ingredient. 

Significant difficulties arise when we attempt to gain further knowledge 
about the set S stated in Theorem 1.2 because a minimizing sequence of 
the problem (1.2) may fail to "concentrate" in R3. On the other hand, 
when we consider the problem over a bounded contractible domain, a more 
satisfactory result is valid because, technically, a bounded domain prohibits 
the minimizing sequence to "float" away and "concentration" is trivially 
guaranteed: 

Theorem 1.4. Let fi be a bounded contractible domain in M3 and consider 
the admissible set of all the field configurations which assume a constant 
value on the boundary of and outside Q.. Then, over such an admissible set, 
the problem (1.2) has a solution for any m £ Z , 

This theorem ensures the existence of the knotted solutions of respective 
Hopf charges obtained in 13-2-4 where the full space R3 is replaced by a large 
box in order to carry out computer simulations. 

The Concentration-Compactness and Substantial Inequality. 
When one considers the minimization problem (1.2), one naturally encoun
ters the three alternatives in the concentration-compactness principle due 
to P.-L. Lions for the minimizing sequence, namely, 
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(i) compactness (concentration of energy up to translations); 
(ii) vanishing (energy density is flattened to zero everywhere); 
(iii) dichotomy (energy splitting into floating chunks). 
In order to achieve convergence (compactness), one usually needs to 

rule out (ii) and (iii) to arrive at (i). For our problem, however, it is im
possible to rule out (iii) completely. Indeed, we are in a situation where we 
have to accept (iii) (splitting) and achieve something less than (i) (concen
tration). More precisely, we show that the energy at the worst would split 
into "topologically concentrated" floating chunks characterized by (1.4) and 
(1.5), which we referred to as the Substantial Inequality. We shall see later 
that this important inequality will allow us to obtain existence (hence con
vergence) indirectly. 

The 3/4-Power Upper Bound and Knotted Solitons. We note that 
a profound implication of (1.6) is indeed the existence of knotted solitons 
at sufficiently high Hopf charges. To see this, we show that, for a large 
value of Q, a Faddeev energy minimizer prefers to appear as a clustered 
configuration (a knotted soliton) realizing the topology designated by Q 
than appear as a field configuration with widely separated energy lumps of 
a simpler topology (a multisoliton of a sum of unknotted solitons) realizing 
the same topology. Such a result may be illustrated most easily by showing 
that, if m > 0 is sufficiently large, a Faddeev energy minimizer with the 
Hopf invariant Q = m can never be represented as a multisoliton of the 
sum of m widely separated solitons, each of a Hopf charge Q = 1 (an 
unknot). If the above described multisolitons were allowed, then, away from 
the local concentration regions of these unknots, the field configurations 
gave negligible contributions to the total energy. Hence, approximately, we 
would have Em ss mE\, which contradicts (1.6) for large m. Therefore, 
unlike vortices, monopoles, instantons, and cosmic strings, which do not 
mind to stay apart at least at the BPS limit, the Faddeev knots prefer to 
stay together in a clustered structure. In other words, the Faddeev knots 
like to stay knotted. 

Existence Theorems Obtained by the Substantial Inequality and 
the 3/4-Power Upper Bound. To prove Theorem 1.1, we write the 
decomposition mo = mi + • • • + m^, ms £ Z, s = 1, • • • , I so that Emo > 
Emi + • • • + Emi (splitting into I floating chunks) > £Emo. Hence £ = 1 
(no splitting) and concentration-compactness is achieved. In other words, 
Theorem 1.1 is proved. In order to prove Theorem 1.2, we suppose otherwise 
that § is finite. Set m° = max{m € §}. Again, since for any m G N, there is 
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a decomposition m = miH \-me,ms G S, s = 1, • • • ,£,we havem < £m°. 
On the other hand, we also have Em > Emi-\ \-Eme > lEmo. Combining 
these two inequalities, we have Em > (Emo/m°)m, which contradicts the 
upper bound (1.6). This proves Theorem 1.2. 

Proof of the 3/4-Power Upper Bound. We first recall the following 
fact: if u G C1(]R3, S2) is such that u(x) =constant for |or| sufficiently large 
and that v : S2 —> S2 is a smooth map of degree deg(v), then the Hopf 
invariant of u = v o u : R3 —> S2 satisfies Q(u) = (deg(v))2Q(u). 

We begin by considering the case m = n2, for a positive integer n. 
We decompose the upper hemisphere S+ as S12. = U™=1B(i) U D. Here 
B(i)'s are mutually disjoint geodesic balls of radius r ~ l/\/n inside S±. 
We define a Lipschitz map v : S2 —> S2 as follows: v(x) = (0,0,1) for all 
x € 52\U"=1B(z), and on each B(i), v is such that V\QB{%) = (0,0,1), v(B(i)) 
covers S2 exactly once, and v : B(i) —> 5 2 is orientation-preserving. In other 
words, the degree of the map from B(i) onto S2 is exactly 1. We can further 
require that || Vu||/,2(s2) < Cy/n for a positive constant c independent of n. 

We then construct a map h : R3 —> S2 such that h is a constant outside 
the ball B/^, | |V/I| |L°°(R3) < c/y/n for a constant c independent of n, and 
that Q{h) = 1. 

Let u = voh € B. Then Q{u) = n2 = (degu)2 = m. On the other hand, 
I|VU||Z,°°(R3) < c2 and u{x) is a constant for x outside the ball B^. Hence 
E{u) < C ( v

/ i ) 3 = C|m|3/4. 
For the general case, we have n2 <m < (n+1)2 for some positive integer 

n. We observe that k = m-n2 < (n + l ) 2 - n2 = 2n + 1 . Let h0 : B\ —> S2 

be a smooth map with /io|asi = (0,0,1) and Q(h0) = 1. Take A; points 
#i) • • • ,Xk £ R3 such that |#j| > > y ^ and that |x» — Xj| > > 1 + -y/n for all 
i, j = 1, • • • ,k, i ^ j . We then define u : R3 —» S2 as follows: w(a;) = u(:r) = 
(u o /i)(x) for x G B^(O) , u(a;) = /io(a: - ic») for x G 5i(xi) , i = 1, • • • ,k, 
and u(x) = (0,0,1) otherwise. Here u is constructed as in the case m = n2 

before. It is obvious that u is a Lipschitz map from R3 into S2 with u{x) = 
(0,0,1) for |a;| large. Besides, Q(u) = Q{u) + k = n2 + k = m. Moreover, 
E(u) = E{u) + kE(h0) < Ci(Vn)3 < C2m^4. We have thus proved (1.6) 
in the case that m is positive. For negative m, one simply needs to change 
orientation. 

2. The Skyrme solitons 

Brief Review. The Skyrme model 2 1 _ 2 4 is a quantum field theory for 
baryons (including subatomic particles such as proton and neutron and 
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hyperons). The static Skyrme energy has two terms which are similar to the 
Faddeev model and governs a map from M3 into S 3 « SU(2). The Skyrme 
solitons are the energy minimizers among the topological class defined by 
a Brouwer degree, which is physically the baryon number of the system. 
Therefore, as will be seen below, the technical structure of the Skyrme 
model is similar to that of the Faddeev model. In particular, the existence 
of an absolute energy minimizer of the Skyrme model of unit baryon number 
cannot be proved via a direct application of the concentration-compactness 
principle as was originally conceived in 9,1° but can only be proved indirectly 
via a use of the Substantial Inequality. The second aim of this talk is to 
present a correct proof for the existence of a Skyrme soliton in the class of 
unit baryon number, which is in fact a by-product of our method for the 
Faddeev knot problem. 

The Skyrme Model and Existence Theorem. The static Skyrme en
ergy has the form 21~24 

E(n) = f \ J2 \dknf + E |dfcnAcH2jdx, (2.1) 
•*R3 *• l<fc<3 l<fc<^<3 ' 

where the field configuration n maps R3 into S3. Hence, similar to the 
Faddeev model, the relevant topological invariant is the Brouwer degree 
(when n is viewed as a map from S3 = R3 U {00} into itself) which may be 
represented as an integral as well, deg(n) = ^ r JR3 det(n, Vn) da;. 

For any integer m, one is interested in the solvability of the optimization 
problem 

Em = inf{£(n) | £ (n ) < 00, deg(n) = m}. (2.2) 

It can be shown that all the existence results (except the (3/4)-growth law) 
parallel to those in Theorems 1.3 and 1.4 hold for the problem (2.2) and 
we skip their corresponding statements. Instead, we will only indicate that 
the following result holds for the Skyrme model as a corollary from our 
analysis: 

Theorem 2.1. For m = ± 1 , the problem (2.2) has a solution. 

Proof of Theorem by Substantial Inequality. It suffices to consider 
the case m = 1. Recall that there is a decomposition 1 = mi + ••• + 
me,ms G Z, s = 1, • • • ,£, so that E± > Emi + • • • + Eme. We assert that 
this decomposition must be trivial. That is, I = 1 and mi = ±1 . In fact, 
if this is not trivial, then there is an ms (1 < s < £) so that \ms\ > 2. 
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Hence E\ > EmB. On the other hand, however, Esteban 9 has obtained the 
estimates Em > 6|53||m|,Vm G Z ;£ i < 6V2\S3\, where | 5 3 | is the volume 
of the unit 3-sphere. Thus we arrive at a contradiction. 

3. The two-dimensional Skyrme solitons 

Brief Review. Recently, there has been some interest in formulating a 
Skyrme theory over a (2 + l)-dimensional spacetime, following the original 
idea of Skyrme. In such a lower-dimensional field theory, in addition to the 
usual Skyrme term, one must impose a potential term in order to stabilize 
the solitons. Hence, parallel to the classical minimization problem of the 
static Skyrme energy over the spatial domain E3 , we encounter the mini
mization problem over the spatial domain R2, for which the static Skyrme 
energy now contains an additional potential term. This is the problem of the 
existence of two-dimensional (2D) Skyrmions. In this context, interestingly, 
the technical difficulties (in 3D) in the Esteban paper 9 may all be over
come to yield a complete proof of an existence theorem for 2D Skyrmions 
following the ideas given in 9 by directly using the method of concentration-
compactness. We emphasize that such an approach works only for the 2D 
Skyrme model, which is the third aim of this talk. 

The Static Energy Functional and Existence Theorem. In normal
ized form, the two-dimensional Skyrme energy functional governing a con
figuration map n : R3 —> S2 is defined by (cf. 1 and references therein) 

E(n) = \J2 | | V n | 2 + ±\dm A 92n|2 + | ( 1 - k • n ) 2 | dx, (3.1) 

where k = (0,0,1) is the north pole of S2 in R3, and A,// are positive 
coupling constants. Note that, sometimes in literature, the potential term 
in (3.1) is chosen to be of a lower power, /x(l — k • n), which makes the 
potential energy of a stereographic projection take infinite value. In order 
to maintain a finite value for the potential of a stereographic projection, 
we observe the above (common) convention for the choice of the potential 
density. However, our general analysis is not affected by such a convenient, 
definitive, choice. 

Finite-energy condition implies that n tends to k as \x\ —> oo. Therefore 
n may be viewed as a map from S2 to itself which defines a homotopy class 
in ir^iS2) = Z, whose integer representative is the Brouwer degree of n with 
the integral representation deg(n) = -^ JR2 n • (9in A d^n) da;. 
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Like before, we are interested in the basic minimization problem 

Em = inf{E(n) | £ (n ) < oo, deg(n) = m}, (3.2) 

where m e Z. Below is our main existence result for 2D Skyrmions. 

Theorem 3.1. If the coupling constants X and /J, satisfy 

A/x < 48, (3.3) 

then the minimization problem (3.2) has a solution for m = ± 1 . Moreover, 
Ei < Em for all \m\ >2ifX/j,< 12. 

Note that the condition (3.3) guarantees E\ < Em for all \m\ > 3. 

Recent Development. It is interesting to mention that the Substantial 
Inequality method may be exploited further to obtain some new existence 
results. For example, with the help of a sharpened estimate of the univer
sal constant in (1.3) and a suitable estimate of E\, we can show that E\ 
is in fact attainable for the Faddeev model. That is, 1 G § . Moreover, for 
the 2D Skyrme model, the Substantial Inequality is also valid for the full 
parameter regime which allows us to prove that the least-positive energy 
of the functional (3.1) is always attainable and that E\ is actually attain
able under the condition XJJ, < 192, instead of (3.3). These results will be 
published elsewhere. 

In conclusion, we have presented a series of existence theorems for the 
Faddeev knots (in 3D) and Skyrme solitons (in 3D and 2D) characterized 
by their respective topological invariants. The full details are in our papers 
15,16 
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Dynamics of Bose-Einstein Condensates 

Wu-Ming Liu 

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, 
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We obtain exact solutions of the nonlinear Schrodinger equation, the dis
crete nonlinear Schrodinger equation, the two and three coupled nonlinear 
Schrodinger equations which describe the dynamics of one component, two 
component and spinor Bose-Einstein condensates with the short-range on-site 
interactions, the long-range dipole-dipole interactions, the time-dependent in
teratomic interaction near Feshbach resonance in an external potential. We find 
one-, two-, and three-component solitons of the polar and ferromagnetic types 
in spinor Bose-Einstein condensates. We study the magnetic soliton dynamics 
of spinor Bose-Einstein condensates in an optical lattice. 

1. Introduction 

The dynamics of ultracold atoms including atoms near Feshbach resonance 
in an external potential can be described by the nonlinear Schrodinger 
equation in the mean field approximation. It gives a link between the dy
namics of condensed matter and the physics of nonlinear media. This will 
allow us to get a better understanding, both at the classical and at the 
quantum level, the interplay between on-site - intersite interactions as well 
as integrability - nonintegrabihty and discrete - continuum properties of 
condensed matter in an external potential such as an optical lattice. From 
the other side, we show that the system of BEC in an external potential 
such as an optical lattice give us a new tool to study the different solitary 
excitations as the physical parameters of the system of condensed matter in 
external potential varied. Such a highly controllable system may be crucial 
in answering some unresolved questions in the theory of quantum nonlin
ear dynamics. One of major developments in BEC was the study of spinor 
condensates. Spinor BEC feature an intrinsic three-component structure, 
due to the distinction between different hyperfine spin states of the atoms. 
When spinor BEC are trapped in the magnetic potential, the spin degree of 

mailto:wmliu@aphy.iphy.ac.cn
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freedom is frozen. However, in the condensate held by an optical potential, 
the spin is free, making it possible to observe a rich variety of phenomena, 
such as spin domains and textures. Recently, properties of BEC with this 
degree of freedom were investigated in detail, experimentally and theoret
ically. An important result demonstrated that, under special constraints 
imposed on parameters, the matrix nonlinear Schrodinger equation, which 
is a model of the one-dimensional spinor BEC in the free space, may be in-
tegrable by means of the inverse scattering transform. For that case, exact 
single-soliton solutions, as well as solutions describing collisions between 
two solitons, were found. Now we give a brief review of our original works 
for dynamics of BEC 1_5 . 

2. Dynamics of BEC near Feshbach Resonance 

Our starting point is based on the well-established concept that at low 
enough temperatures, the nonlinear Schrodinger equation governs the evo
lution of the macroscopic wave function of a three dimensional BEC 1. In 
the physically important case of the cigar-shaped BEC, it is reasonable to 
reduce three dimensional nonlinear Schrodinger equation into one dimen
sional Schrodinger equation, 

i d J ^ ~ + ^ T 1 + 2a( t ) |V(M) | ! V(M) + \x2x^(x,t) = 0, (2.1) 

where time t and coordinate x are measured in units 2/UJ± and a±, 
ax = (H/mijJx)1/2 and ao = (fi/mwo)1^2 are linear oscillator lengths 
in the transverse and cigar-axis directions, respectively. u>± and UJQ are 
respective harmonic oscillator frequencies, m is the atomic mass and 
A = 2|u>o|/wx -C 1. The Feshbach-managed nonlinear coefficient reads 
a(t) = \aa(t)\/a,B — <?oexp(At) (as is the Bohr radius). 

The so-called "seed" solution of Eq. (2.1) can be chosen as tpo(x,t) = 

A c exp[ f + ipc], where ^c = fc0zexp(At) - ^ + ( ^ ^ X ^ O - i ) 
and Ac and ko are the arbitrary real constants. We perform the Darboux 

transformation ipi =ipo + ~i= ^+ll^2 exp(—At/2 - i\x2/4) to obtain the 

new solution of Eq. (2.1) by taking ipo as the seed. Then we obtain the 
exact solution of Eq. (2.1) as follows: 

. . . (7cosh0+cos<^)+i(asinh0+/3siny>) At , . . ,n n. 
iP=[Ac+As^ ^r—^ exp(—+ty>e), 2.2 

cosh o + 7 cos ip 2 

where 6 = _[(fco+*.)AJI-V5?A.A/][exp(2At)-i] + ARXeMXt)i ^ = 

[(fco+fca)Aj + %/g?A3AR][exp(2At)-l] | ^ x CZZp(\t) a — v /g°A°( fc°- fc°+Aj) R = 
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1 - g ^ , 7 = V^A^a-V9-oAs) ^ A = J{_jg-oAs +i{ks _ fco)]2 _ 4 ^ 2 = 

AH + »Aj, A = 5o^4? + ( A R " ^ ] + ^- f c°4+A f ) 2 , where ifcs is the ar-
bitrary real constant. On the one hand, when Ac = ko = 0, Eq. (2.2) 
reduces to the well-known one soliton solution, tps = Assech9sexpiip3, 
where 6S = -y/goexp(\t)Asx + 2^/goksAs[exp(2\t) — 1]/2A and ips = 
ipc - g0A

2
c[exp{2Xt) - 1]/2A. 

3. Dynamics of Dipolar BEC in Optical Lattice 

We consider a dilute gas of bosons in the optical lattice with the following 
Hamiltonian 2, 

H = J dr*t(r)[_^-v2 + Vopt]*(r) 

+ f drdr'^(r)¥(rl)Vint^(r')^(v)+ f dr^(v)Vext^(r), (3.1) 

where \&t(r) and ^( r ) are the boson field operators that annihilate and cre
ate a particle at the position r, Vopt = Vo sin2(27rz/A) is the optical lattice 
potential, A is the light wave length, Vext is an external potential such as 
the gravity in the Yale experiment or magnetic traps, Vint includes on-site 
and nearest-neighbor interactions. In the case of polarized dipoles the inter-
action potential is Vint = dH]~l^e) + ^ S ( r - r') = Vdd + U0S(r - r ' ) , 
where the first term Vdd is the dipole-dipole interaction characterized by 
the dipole d and the angle 8 between the dipole direction and the vec
tor r — r', and the second term is the short-range interaction given by the 
s-wave scattering length a. 

The boson field operators of ^ ( r ) and \&+(r) can be expanded over 
Wannier functions w(r—r„) of the lowest energy band, localized on this site. 
This implies that the energies involved in the system are small compared 
to the excitation energies of the second band, \&(r) = ^ n Cnw(r — r„), 
^ f t( r) = E n ^ n w * ( r — rn)- If we only consider nearest-neighbor sites of 
n, which is a good approximation for the BEC in ID optical lattice as 
the large lattice constant, we will get an effective Hamiltonian. We now 
introduce a coherent state \a(t)) of the atomic matter field in a potential 
well. Evaluating the atomic field operator Cn for such a state, we find then 
the macroscopic matter wave field, ipn = (a(t)\Cn\a(t)). Using the time-
dependent variation principle, we can get the equation of motion for BEC 
in the optical lattice, 

i-gjT + JlPn+l + Jlpn-1 - EnV'n - U0\lpn\2Ipn ~ Udd{4>n+1 + ^n-lj^n? = 0, 

(3-2) 
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where en = £0 + eext is the total energy of each lattice site, Udd = U2 is the 
coefficient which denotes the dipole-dipole interaction. 

Dynamics of BEC with repulsive on-site interaction Using the 
substitution ipn —» (2J/(U0 + 2Udd))1/2Vnexp[-i(e0 - 2J + J\2)]t, A2 

is the background amplitude, we can obtain the following general discrete 
nonlinear Schrodinger equation, i^§^ + (<pn+i + fn-i — 2<pn) — e(<pn+i + 
<Pn-i)\<fn\2 + 2(e - l)|¥>n|Vn + 2p*(pn = 0, where e = 2Udd/{U0 + 2Udd), 
p2 = (A2 - eext/J)/2, t —• Jt. 

When e = 1, the previous equation is reduced to the integrable Ablowitz-
Ladik model which can be solved by the inverse scattering technique, and 
it leads to the so-called dark soliton solution with Bloch oscillations in a 
constant electric field. When 0 < e < 1, this equation is non-integrable 
and only the approximate solution can be obtained by the multiple scale 
expansion method. There are singular points in this equation when {UQ + 
2Udd)/2Udd = (A2 — eext/J)/2. At the singular points, the dispersive term 
becomes zero and the given site is decoupled from its neighbors. Near these 
singular points or far from them, the dynamic behaviors of <pn are quite 
different. 

When the excitations are in the vicinity of the singular points, there 
are soliton solutions which can be described by the Toda lattice model 
and the solution of this equation in the small-amplitude limit is <pn = 
K™e_1/2(1 — j2fj,an) exp(—ijXn + ivot), where e < 1, and 7 <C 1 is a small 
parameter, an = an(r) and Xn = Xn(T) a r e t w 0 r e a l functions of the time 
r = 2yty/2(e~1 -1 + K), w0 = 2{{\2-eext/J)/2-e-1), fi = K sgn(e- l+K). 

When the excitations are far from the singular points, the dynamics of 
BEC in the optical lattice can be described by the small-amplitude limit. 
The solution can be sought using the multiscale expansion technique. We 
can find the soliton solution of the previous equation in the small amplitude 
approximation, ipn = [p-(12i'2G2/Gi)secb2(iy(z-V(T)))}e~lin^\ where v 
is an arbitrary parameter, Gi = - i ( l -e / o

2 ) [3- (3e+l ) / o
2 ] , V = -2v2G2/C, 

G2 = -8p2(3 - Atp2), C = -ipy/l - ep2. 
Dynamics of BEC with attractive on-site interaction Without 

any external potential and for the small kinetic energy, Eq. (3.2) is re
duced to i^f- + (V„+l + Vn-l) - ^^llpntpn ~ ^ f O/Wl + Vn-OV&^n = 0. 
This equation is non-integrable, and a first order adiabatic approxima
tion solution can be obtained by perturbation method. Treating the term 
wpnlipnl2 as a perturbation, where Uo < 0, v = —Uo/J > 0, and using the 
adiabatic approximation, a soliton retains its functional form in the pres
ence of perturbation, the solution to the first order of v can be written as 
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V>„ = ^sinh/3sech[/3(n-a;)]e i a(n-^+ i o", where dx/dt = (2sinh/3sina)//3, 
OO 

d0/dt = 0, $* = ufx^ ^0^008(2^), £ = 2cosacos/? + 

% sinasinh/3, where Udd < 0, ^ = -Udd/J > 0. This solution is a bright 
soliton but the role of the dipole-dipole interaction may follow from a re
finement of the general consideration described above. We conclude that 
for the attractive interaction, the equation of motion of dipolar BEC can 
be treated by perturbation methods and the bright soliton solution can be 
found. 

4. Solutions of Two-Species BEC in an Optical Lattice 

The two-species BECs in a ID periodic potential can be described by the 
coupled nonlinear Schrodinger equations 3, 

._9Vi ft2 d2i>i 2h2ai,, l 2 , 2h2ai2 , , ,2 , , T . , , , 

(4.1) 

where ipi, rrii, U = y/H/m,iU)o are the macroscopic wave functions of the 
condensates, the mass and the harmonic oscillator lengths in the radial 
direction of the ith species (i = 1,2) respectively, ai, a-i and a\2 denote the 
s-wave scattering lengths between same-species and interspecies collisions. 
Vi{x) are the periodic potentials, Vi(x) = VoiiSii2(kiJx, k), with Vo,i denoting 
the magnitude of potentials, where k^ = 2ir/\ is the wave vector of the laser 
light and A is the wavelength, corresponding to a lattice period d = A/2. 
sn(fcjT,:r, k) is the Jacobian elliptic sine function with modulus k (0 < k < 1). 
In the limit k = 0, the Jacobian elliptic sine reduces to sinusoid function 
and thus V(x) possesses a standard form of the standing light wave. For 
values of k < 0.9 the potential is virtually indistinguishable from a standing 
light wave. Finally, for k —> 1, V(x) becomes an array of well-separated 
hyperbolic secant potential barriers or wells. 

For the case of weakly coupled condensates in an optical lattice, the 
wave function ip can be decomposed as a sum of wave functions localized 
in each well of the periodic potential (tight binding approximation) with 
the assumption relying on the fact that the height of the interwell barrier 
is much higher than the chemical potential. We, however, do not restrict 
ourself on the low energy case and look for the global condensates wave 
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functions of excitations: ipi(x,t) = (f>i(x)exp(—ifj.it/h), where f±i (i = 1,2) 
are the chemical potentials. With the general form of spatial wave functions 
4>i(x) written as <j>i(x) = ri(x) exp[i<£,(x)], Eq. (4.1) can be separated as real 
and imaginary parts. We then integrate once for the imaginary part and 
obtain the first-order differential equations for the phases tfii(x), (p^x) = 
•^rhs, where parameters c^ (i = 1,2) are constants of integration to be 
determined. 

We then construct the solutions as r2(x) = AiSVL2(kjjX,k) + 
Bi, where the constants £?, (i = 1,2) determine the mean am
plitudes and act as the dc offsets for the numbers of the con
densed atoms and parameters Ai (i = 1,2) are to be determined. 

W e find Al = - ^ ^ 2HHaia2-a'(2) . A2 = 

^ P ^ v 0 , ^ M - ^ . , - * ^ where a, = 2&B2 

(1 + k2)B, + A1], a\ = B2k
2
L[^B2 + (1 + k2)B2 + A2], M l = | £ f (1 + 

1-2 i 6ai p i 4 a i 2 y m r p , 2ai2y/fnT A2 p , miVo.i Bi \ ., _ H2k2
L /-, , 

k + TVZBl + hi2k'iv^B2 + hhk^y^MBl + "PfcTAT^' ^2 - - s s rU + 

5. Magnetic Soliton of Spinor BEC in an Optical Lattice 

The dynamics of spinor BECs trapped in an optical lattice is primarily gov
erned by three types of two-body interactions 4: spin-dependent collision 
characterized by the s-wave scattering length, magnetic dipole-dipole inter
action (of the order of Bohr magneton (is), and light-induced dipole-dipole 
interaction adjusted by the laser frequency in experiment. Our starting 
point is the Hamiltonian describing an F = 1 spinor condensate at zero 
temperature trapped in an optical lattice, which is subject to the mag
netic and the light-induced dipole-dipole interactions and is coupled to an 
external magnetic field via the magnetic dipole Hamiltonian HB, 

H= ** £ / & & ( i - ) [ - ^ - + r A ( r ) ] « . ( r ) + £ jdvdr' 

& ( r ) $ ( r ' ) [ ^ $ T ( r , r ' ) + ̂ T ( r , r ' ) ] ^ ( r ' ) ^ ( r ) + HB, (5.1) 

where ipa(
r) is the field annihilation operator for an atom in the hyperfine 

state | / = l , m / = a), UL(V) is the lattice potential, the indices a,(3,v,T 
which run through the values —1,0,1 denote the Zeeman sublevels of the 
ground state. The parameter £/£°" r(r,r') describes the two-body ground-

http://ifj.it
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state collisions and U^~gT(r,r') includes the magnetic dipole-dipole inter
action and the light-induced dipole-dipole interaction. 

When the optical lattice potential is deep enough there is no spatial 
overlap between the condensates at different lattice sites. We can then ex
pand the atomic field operator as ^(r) = J ] n ^2a=0 ± 1 aa(n)cf)n(r), where 
n labels the lattice sites, <^„(r) is the condensate wave function for the nth 
microtrap and the operators aa(n) satisfy the bosonic commutation rela
tions [aa{n),a}Jl)} = 5ap5ni. It is assumed that all Zeeman components 
share the same spatial wave function. If the condensates at each lattice 
site contain the same number of atoms TV, the ground-state wave func
tions for different sites have the same form </>n(r) = 4>n{v — rn). The spin 
operators are defined as S„ = a^(n)Fa„a„(n), where F is the vector op
erator for the hyperfine spin of an atom, with components represented by 
3 x 3 matrices in the | / = l , m / = a) subspace. We obtain both the one-
and two-soliton solutions denoted by S(n) with n = 1,2 in the following 
form: S* = l-(x2,n+2x3,nsin2 $„) /A„, S% = (xi,nVn cosh 9 „ sin $„+X2,n 

s inh6 n cos$ n ) /A„ , S£ = (xi,n cosh 0 „ cos $„ + X2,n"nSinh0n sin $„)/A„, 
where A„ = cosh20„ + X3,nSin2i>„, 0 n = 2K 4 ,„ (Z - Vnt - zn), $„ = 
2K3,nZ - 0 „ i + (j)n, Vn = 2(Ki)Tl + ^ K 2 , n ) , ^ n = 4 ( K I ) „ K 3 ) „ - K2,n«4,n), 

Kl,n = Mn(l + P 2 / | C n | 2 ) , «2,n = ^ n ( l ~ P 2 / I C n | 2 ) , «3,n = M 1 ~ P*l\Qn\2), 

«4,n = ^ n ( l + P 2 / |Cn | 2 )> Vn = (\(n\2 + P*)/(\(n\2 ~p2), Xl ,n = (2flnUn)/\(n\
2, 

X2>„ = (2^)/|C„|2, and X3,n = (V^)/(|C„|2 - p2)2-

6. Nonlinear Modulation Instability in Spinor BEC 

We start with an effectively one-dimensional BEC trapped in a pencil-
shaped region, which is elongated in x and tightly confined in the transverse 
directions y,z 5. Atoms in the F = 1 hyperfine state can be described 
by a ID vectorial wave function, &(x,t) = [$+i(x,t),$o(x,t),$-i(x,t)]T, 
with the components corresponding to the three values of the vertical spin 
projection, mp — + 1 , 0 , - 1 . The wave functions obey a system of coupled 
nonlinear Schrodinger equations, 

ihdt*±l = - 2 ^ 9 2 $ ± 1 + (Co + C2)( |$± 1 |2 + |$0 |2)$±1 

+ (C0 - C2) |$T l |2$±l + C2$^!$g, 

ihdt^0 = - £ d 2 $ o + (co + c 2 ) ( | $ + 1 | 2 + |$_i |2)$o 

+c0 |$o|2$o + 2c 2 $ + i$_ i$S- (6-1) 

where Co = (<?o+2<?2)/3 and c2 = (32—<7o)/3 denote effective constants of the 
mean-field (spin-independent) and spin-exchange interaction, respectively. 
Here <?/ = Af?af/[ma\{\ —ca//a±)}, with / = 0, 2, are effective ID coupling 
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constants, aj is the s-wave scattering length in the channel with the total 
hyperfine spin / , oj_ is the size of the transverse ground state, m is the 
atomic mass, and c = —£(1/2) w 1.46. Redefining the wave function as <I> —> 
(0+i, N/200, 0 - I ) T and measuring time and length in units of fi/|co| and 
y/h2/2m|Co|, respectively, we cast Eqs. (6.1) in a normalized form idt<f>±i = 
- 9 2 0 ± 1 - ( I / + a) ( |0 ± 1 | 2 + 2 | 0 o | 2 ) 0 ± 1 - ( l / - a ) | 0 T l | 2 0 ± 1 - 2 a ^ 1 ^ ) i ^ o = 

- d 2 0 o - 2 ! / | 0 o | 2 0 o - ( i / + a)(|0+i|2 + | 0 - i | 2 )0o -2a0+ i0_ i0o \ where v = 
-sgn(co), a = -c 2 / |co | . 

6.1. Exact single-, two-, and three-component soliton 

Single-component ferromagnetic soliton a single-component ferro
magnetic soliton is given by a straightforward solution, 0_i = 0o = 0 , 

0+i = \/^+-fsech(-v/—fj,x)e~ltlt, where the negative chemical potential /z is 

the intrinsic parameter of the soliton family. 
Single-component polar soliton The simplest polar soliton, that 

has only the 0o component, can be found for v = + 1 , 0o = 

yf
zrjisech.{,Jzrjix)e~lilt, 0 ± 1 = 0. 

Two-component polar soliton In the same case as considered above, 
v = +1 , a two-component polar soliton can be easily found too, 0o = 0, 
0_l_i = ±0_ i = y/IIJlsecb.(y/l:rjlx)e~,''J't. 

Three-component polar solitons One of three-component solitons 
of the polar type is 0o = \ / l — e2i/—/txsech(-v/—/ux)e_l'Jt, 0+i = —0_i = 
±ei/—/xsech(-v/—/uar)e_v', where e is an arbitrary parameter taking values 
— 1 < e < +1 (the presence of this parameter resembles the feature typical 
to solitons in the Manakov's system, and, as well as the one- and two-
component polar solitons displayed above, the solution does not explicitly 
depend on the parameter a. We stress that the phase difference of 7r between 
the 0+i and 0_i components is a necessary ingredient of the solution. 

There is another three-component polar solution similar to the above 
one (i.e., containing the arbitrary parameter e, and independent of a), but 
with equal phases of the 0±i components and a phase shift of ir/2 in the 0o 
component. This solution is 0o = i \ / l — e2\/~A*sech(-V/—/ia;)e_vt, 0+i = 
0_i = ±eV~Atsech(A/—^x)e"%lit, where the sign ± is the same for both 
components. 

In addition, there is a species of three-component polar solitons that 
explicitly depend on a, 0o = (/i+i^_i)1/'4sech(v

/r7^a;)e_'t/J*, 0±i = 
y/~/i±isech(i/rfix)e~l^t, where /z±i are two arbitrary negative parame
ters, and the chemical potential is fi = —{v + a)(-v/—/i+i + y/—/i_i)2/2, 
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which implies that v + a > 0 (note that this solution admits v = — 1, i.e., re
pulsive spin-independent interaction). Each species of the three-component 
polar soliton depends on two arbitrary parameters: either /i and e, or /u._i 
and /i+i. 

Finite background solitons In special cases, it is possible to find 
exact solutions for solitons sitting on a nonzero background. Namely, for 
v = 1 and a = —1/2, one can find a two-component polar soliton with a 
continuous-wave background attached to it, in the following form: </>o = 0, 
0+1 = e - ^ ' v S ^ t T J ±sech(vc:/Ia;)], 0 - i = e'W y/=ji[^ Tsech(v/=/xa;)]. 

For v = a = 1, a three-component polar solution with the background 
can be found too, </>+i = 0_i = ^y/—fie~ilJjt[-js ± sech(v

/—fix)], (j>o = 
\^—\ie~%,lt\-jK ^ sech(y/—fix)]. In the latter case, the availability of the 
exact solution is not surprising, as the case of v = a = 1 is the exactly 
integrable one. 

6.2. Modulational instability 

Now we focus on the integrable case, with v — a = 1, which corresponds 
to the attractive interactions. As explained above, the spinor BEC obeys 
this condition if a special (but physically possible) constraint is imposed 
on the scattering lengths which determine collisions between atoms. Then, 
Eqs. (6.1) can be rewritten as a 2 x 2 matrix NLS equation, idtQ + d%Q + 

2QQ*Q = 0, Q = ( 1 ) . This equation is a completely integrable 
9>o <P-i 

system. We obtain its new family of solutions in the form Qi = [Ac + 
4f(I + AA*)-1A]ei,<,<=, where A = (Ile6-^+ K-1Ac)(K-1AcIIe

6-iif' + I)-\ 
6 = MTX + [2£MR - (fc + 2rj)Mj]t, <p = MRx - [2£M7 + (k + 2n)MR]t, M = 
y/(k + 2i\f + 4(a<! + /?2) = MR + iMh K= \{ik - 2A + iM), A = (, + irj is 

B a 
the spectral parameter, and II = ( ) is an arbitrary complex symmetric 

matrix. It is worth noting that the three-component polar soliton considered 
in the previous section is not a special example of the solution Qi. 

7. Conclusion 

In conclusion, our results describe the dynamics of BEC near Feshbach 
resonance in an expulsive parabolic potential. Furthermore, under the con
dition of |a s(i)| < acr, it is possible to squeeze a bright soliton of BEC 
into the assumed peak matter density, which can provide an experimental 
tool for investigating the range of validity of the ID nonlinear Schrodinger 
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equation. In addition we find different regions in which stable bright or 
dark soliton excitations will exist and on the boundaries of these regions 
the system becomes effectively dispersionless and the formation of shock 
waves becomes possible. These different excitations are observable when we 
modify the wavelength and intensity of the lattice and change the magni
tude of the external fields in the experiment. Phase diagram is determined 
analytically according to the order parameters and persistent currents in an 
optical lattice ring are obtained explicitly in terms of the exact wave func
tions which are seen to be travelling matter waves. The magnetic soliton of 
spinor BECs in an optical lattice is mainly caused by the magnetic and the 
light-induced dipole-dipole interactions between different lattice sites. 
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We describe the twisted space-time symmetries which imply the quantum 
Poincare covariance of noncommutative Minkowski spaces, with constant, Lie 
algebraic and quadratic commutators. Further we present the relativistic and 
nonrelativistic particle models invariant respectively under twisted relativistic 
and twisted Galilean symmetries. 

1. Introduction 

Since the work of Doplicher et all. (see e.g.1'2) there is a strong indica
tion that due to quantum gravity effects the space-time coordinates are 
becoming noncommutative. In general case one can write* 

~2 O^(KXp) 
K 
% 

Z2 "M" ' K "V-v "P ' ""V C + Z ty" XP + i^X^T , (1.1) 

where the fundamental mass parameter K has been introduced in order 
to exhibit the mass dimensions of respective terms and have the constant 
tensors O^J, 9liJp, 0\iv as dimensionless. If we link (1.1) with quantum 
gravity one can put K = mp\ (mpi - Planck mass). Further we add that 
the relation (1.1) describes in D=10 first-quantized open string theory the 
noncommutative coordinates on D-branes providing the localizations of the 
ends of the strings 3 '4. 

'Formula (1.1) is not the most general one. One can assume that the rhs of (1.1) de
pends also on momenta (or derivative operators) as well as on other operators, e.g. spin 
variables. In this note we shall not consider such extensions of (1.1). The expansion (1.1) 
is only up to quadratic term because higher orders do not have classical limit K —> oo. 

http://lukier.woronowQift.uni.wroc.pl
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There are two important problems related with the application of for
mula (1.1) to physical models: 

i) In standard relativistic theory, with classical Poincare symmetries, 
the first term on rhs of (1.1) breaks the Lorentz invariance, and further two 
terms break both Lorentz and translational invariance. One can ask how 
looks the deformation of classical Poincare invariance which permits to con
sider relations (1.1) as covariant under deformed Poincare transformations, 
i.e. the same in any deformed Poincare frame. 

ii) There should be given prescriptions how to formulate the classical 
mechanics and field theory models with noncommutative space-time coor
dinates (1.1), covariant under the twisted Poincare symmetries. 

If the time coordinate remains classical (i.e. in formula (1.1) OQ^ = 0) 
both points i) and ii) can be applied to the nonrelativistic noncommutative 
theories with classical Galilean invariance broken by relation (1.1). 

2. Twisted Space-Time Symmetries 

We shall look for the quantum relativistic symmetries implying the co-
variance of noncommutative Minkowski spaces. In systematic study firstly 
one should consider all possible quantum relativistic symmetries (quantum 
Poincare algebras) in the form of noncommutative Hopf algebras, and then 
derive corresponding quantum Minkowski spaces as deformed Hopf algebra 
modules. An example of such a construction which is already more than 
ten years old is the K-deformed Minkowski space 5 _ 7 

[x0,Xi] = -Xi, [xu Xj] = 0 , (2.1) 
K 

corresponding in (1.1) to the choice 9^ = Q^v = 0 and #/,,/ = TJ^QS
 p — 

V^if- Using the Hopf-algebraic formulae of K-deformed Poincare algebra 
in bicrossproduct basis one can show 6 that the relations (2.1) are covariant 
under the Hopf-algebraic action of K-deformed Poincare algebra. 

It appears that the most effective way of describing the noncommu
tative space-times covariant under quantum relativistic symmetries is to 
consider twisted symmetry algebras. In such a case the classical Poincare-
Hopf algebra is modified only in the coalgebraic sector, with all the al
gebraic relations preserved. We change the classical Poincare Hopf al
gebra Ti^ = {U{Vi),m, Ao,So,e) into twisted Poincare Hopf algebra 
U = {U{VA), m, A, S, e) by means of the twist factor T G U(TI)®U{VA) as 
follows (V4 Bg = (P^ MM„)) 

A ( s ) = f o A o ( j ) o r 1 , S(g) = US0(g)U~1, (2-2) 
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A0(g)=g®l + l®g, S0(g) = -g, e{g) = 0, (2.3) 

where (a ® 6) o (c ® d) — ac® bd. The twist T satisfies the cocycle and 
normalization conditions 8 

TX2 (Ao® 1 ) ^ = ^23 ( l ® A o ) . F , (e ® 1).F = (1 ® e).F = 1, (2.4) 

where T\% = f(i) (8 f(2) ® 1 etc. ( ^ = f(i) ® f(2)) and [/ = f(1)5(f(2)). 
The advantage of using twisted Poincare algebra is the explicit formula 

for the multiplication in twisted Hopf algebra module A which should satisfy 
the condition (see e.g. 9, h £ UCP4), a,b £ A) 

h > (a • b) = {hia) • (h2b), (2.5) 

where A(h) = hi® h2. We see from (2.5) that if hi •£ /i2 then a»b ^b»a, 
i.e. from quantum-deformed relativistic symmetry follow necessarily the 
noncommutative Minkowski space as its Hopf-algebraic module. 

One can show that the multiplication in A for twisted Hopf algebra H 
which is consistent with the relation (2.5) (h £ H) provides the formula 
10-12 

a . b = (f(i)o)(f(2)6), T~l = f(1) ® f(2). (2.6) 

In the case of relativistic symmetries one can use the classical space-time 
representation for the Poincare generators PM, MM„ 

PM = id^ , MM„ = iixud^ - x^dv). (2.7) 

Subsequently in the formula (2.6) one can assume that a, b are classical 
functions on commutative Minkowski space x^, and define f(j)(PM, MM„) = 
\i){x, d), i = 1,2. One gets the following star product multiplication which 
is a particular representation of algebraic formula (2.6) 

t(x)*C(x) = (f(i)(a;,9)€(x))(f(2)(a:,9)C(a:))- (2-8) 

The important application of twisted Poincare algebras to the covariant 
description of noncommutative Minkowski spaces, namely describing the 
quantum covariance of (1.1) for the case 0M„ = 6^ is quite recent*. The 
quantum symmetry which leaves invariant the simplest form of (1.1)* 

|a;M,2;„j, = —^"^ , (2-9) 

tThe twisted Poincare symmetries corresponding to 0M„ = ff\ii were earlier discussed in 
1 3 _ 1 6 , but the full consequences of the twisted description were realized in 2004 (see e.g. 
12,17-19) 

* Below, in chapter 2 and 3, we shall use explicitly the fat dot notation for the algebra of 
functions on quantum Minkowski space in order to stress its Hopf algebra module origin. 
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(where [a, b], = a • b - b • a) is generated by the following Abelian twist 

^ = e x p ^ ( ^ P M A P , ) . (2.10) 

We obtain the twisted Poincare-Hopf structure with classical Poincare al
gebra relations and modified coproducts of Lorentz generators MM„ 

Ae(PM) = Ao(P„), (2.11) 

Ae(M^) =Teo Ao( i lV) o T^x 

= A0(AfM„) - \e%\{riPllPv - i]pv P„) ® Pa (2.12) 

+PP ® (jfc^P,, - Jfe,^)] • 

One can consider however also other Abelian twists of Poincare symme
tries, depending on the Lorentz generators MM„ (see 2°.13.14,2i^ j t appears 
that only subclass of general commutator (1.1) with linear and quadratic 
terms can be covariantized by twisted Poincare algebras. In the following 
section we shall consider the quantum Poincare symmetries corresponding 
to the following two twist functions 21: 

i) Lie-algebraic relations for noncommutative Minkowski space 

•7>/3) = exp -^(CA PA A Maf}), (2.13) 

where a, /3 = 0,1,2,3 are fixed and the vector £A = d,^r has vanishing 
components (a, (@. 

ii) Quadratic deformations of Minkowski space 

FiafrS) = exp l-C, Ma0 A M7<5 , (2.14) 

where C, = 0?£ 1 is a numerical parameter, all the four indices a, /?, 7,5 
are fixed and different. 

3. Lie-algebraic and Quadratic Quantum-Covariant 
Noncommutative Minkowski Spaces 

In this Section we shall report on results presented in 21, which we supple
ment by the proof of quantum translational invariance. 

In the formalism of quantum-deformed Hopf-algebraic symmetries the 
quantum-covariant noncommutative Minkowski space can be introduced in 
two ways: 

i) as the translation sector of quantum Poincare group, 
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ii) as the quantum representation space (a Hopf algebra module) for quan
tum Poincare algebra with the action of the deformed symmetry gen
erators satisfying suitably deformed Leibnitz rule (2.5). 

In the case of constant tensor #M„ = 6p,J the quantum Poincare group 
algebra dual to the coproducts (2.11), (2.12) is known15,19,21, and the quan
tum translations do not satisfy the relation (2.9). It appears that the re
lation (2.9) as describing quantum-covariant noncommutative Minkowski 
space can be obtained only as the Hopf algebra module. To the contrary, 
in the case of twisted relativistic symmetries generated by the twist factors 
(2.13, 2.14) it can be shown that both definitions i) and ii) coincide 21. 

i) Lie-algebraic noncommutative Minkowski space. 
The commutator algebra following from (2.13) and the formula (2.6) 
has the form 21 

where 

C % = -UV0u5"a - VauS
p
0) + -Uvat,S

p
0 - r,^S"a). (3.2) 

The relations (3.1) can be written in more transparent way as follows 
(a, j3 are fixed by the choice of twist function) 

i % 
[Xa,X\], = -CWaaX/3 , [x0,X\]m = -~C\V0pXa , (3.3) 

AC K 

where Qa = (p = 0. 
The quantum Lorentz covariance of (3.1) under the Hopf action of the 
Lorentz generators MpV has been shown in 21. We shall show the quan
tum translational invariance of (3.1) using the differential realization 
(2.7). The fourmomentum coproduct generated by twist (2.13) has the 
form 21 

A(PM) = A0(PM) + ^-CXPx A (V^PP - r,0liPa) + 0(P3). (3.4) 

Putting in (2.5) h = PM, a = xp,b = xa and using (3.2) we obtain 

Pp. > (Xp • Xa) = iX{pT]a}il + — (Va^[aVp}0 ~ VP^[aVp]a) , (3-5) 

= iX{pV<r},i +2Pfl> C\"XX • 

Finally we get 

Pp. > [xp, xa]m =Pp> Cx
paxx , (3.6) 
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i.e. the relation (3.1) is covariant. 
ii) Quadratic noncommutativity of Minkowski space coordinates. 

After using the formula (2.6) with inserted twist (2.14) one gets the 
following commutation relations of space-time coordinates ({a, &}. = 
a • b + b • a) 

[x^,xv], = ismh-cosh-(T]aillT]Jv]{x0,xs}, - Va^Vs^p,%-y}. (3.7) 

-V0[nV-yu]{xa,Xs}. +T]l3[v,'n8v]{Xa,X1}») 

- s i n h 2 ^ ( H *V'«#fc'£'l«)' 
k~ct,0 

or in more explicit form (k = a,0 and I = 7, 5) 

[xk,xi], = ita,nh-(r]akr]yi{xp,xs}. - rjakr]Si{x0,xy}, (3.8) 

-VfikVlliXatXs}. + TjPkVSliXa,^},) , 

and [xa,xp]m = [xy,xs], = 0. 
We conjecture that the relations (3.7) are covariant under the action of 
quantum Poincare symmetries, generated by twist (2.14). 
The linear and quadratic relations (3.3) and (3.8) provide special 
choices of the constant parameters 9^• , 0\iv for which the quantum 
covariance group was found in 21. 

4. Particle Dynamics Invariant Under Twisted Relativistic 
and Galilean Symmetries 

The discussion of the noncommutative dynamical theories one begins natu
rally with the consideration of classical mechanics models. We shall restrict 
our considerations here to the case 6^ = 6^, i.e. the noncommutative 
space-time described by (2.9). One can introduce the Lagrangian models 
describing free point particles moving in noncommutative space-time in the 
following two ways: 

i) If 0Mo = 0, i.e. we have the relations 

[xi,Xj] =i0ij, (4.1) 

[xo ,2 i ]=0 , (4.2) 

we deal with classical time variable t, where XQ = ct and noncom
mutative space coordinates Xi. In such a case one can look for the 
non-relativistic Lagrangian models with constraints, which provide the 
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relation (4.1) as the quantized Dirac bracket. Such a first model was 
constructed in 22 in D = (2 + 1) dimensions with the following La-
grangian 

1.2 

Z-* — KCijXiOCj . yQ.o) 

The higher order Lagrangian (4.3) can be expressed if first order form 
in six-dimensional phase space (xi,pi,pi)§ and after introducing the 
linear transformations 

2 _ 
•A-i — X% Pi > 

m 
Pi=Pi, (4-4) 
P - - — 

m 
one obtains the following symplectic structure for the variables YA = 
(Xi,Pi,Pi), (i4 = 1...6) 

{YA,YB} = nAB, fi= - 1 2 0 0 . (4.5) 
V 0 0 f e / 

One can identify (4.1) with quantized PB for the space variables Xi if 
we put in (4.1) % = ^ei:j. 
In 22 the dimension D = 2 + 1 was chosen because in two space dimen
sions one can put 6ij = Ocij, i.e. the relation (4.1) does not break the 
classical Galilean invariance. However if k ^ 0 the Galilean algebra is 
centrally extended by second exotic central charge 23. 

ii) For general constant 0M„ one obtains the noncommutative action de
scribing free particle motion if we introduce in the first order action for 
classical massive relativistic particle 

S = JdT[y^-e(p2-m2)}, (4.6) 

the following change of variables (we recall that 6^ = #/J) 

Vv=xli + -9liVi/'. (4.7) 

§The momenta pi,pi are described by the following formulae 

dC d dC dC 
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It is easy to check that if we introduce CCR following from (4.6) 

[ M * 1 = 0, [y/1,p"] = » V . b M , P l = 0, (4.8) 

then the variables x^ in (4.7) satisfy the relation (2.9) if we put a = 2K2 . 
Using the relation (4.7) one can rewrite the action (4.6) as follows 

S = J dr[x^ - e(p2 - m2) + U^p^). (4.9) 

The variables yM,pM in (4.6) are classical, i.e. transform under Lorentz 
rotations in standard way 

1/M = V « " • P'» = P» • (4-10) 

Using (4.7) and (4.10) one gets however 

Interestingly enough, the transformations (4.11) describe exactly the 
twisted Lorentz transformations, generated by the coproduct (2.12), 
which leave invariant the action (4.9) for the noncommutative rela-
tivistic particle. 

The model (4.9) has been firstly obtained without reference to twisted 
Lorentz symmetries by Deriglazov 24 and its non-relativistic version 

dt[±ipi - —p 2 + -OijpiPj}, (4.12) 

in D = 2 + 1, when 0y = e^, it was proposed by Duval and Horvathy 
25. It is well-known however that the model (4.12) can be also derived 
from the model (4.3). Indeed, the first order formulation of the model (4.3) 
in Faddeev-Jackiw approach 26 to higher order Lagrangians provides the 
action 27,28 

V 2 1 £ = Pi(±i - yi) + h -eijpiPj . (4.13) 

The Lagrangian (4.13) after introducing the new coordinates 

Xi = Xi + -€ij(yj - Pj), (4.14) 

provides the Lagrangian (4.12) (with x^ replaced by Xi) and additional term 
which depends on auxiliary internal variables commuting with (Xi,Pi) 27. 
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The nonrelativistic model (4.12) can be considered in any space dimen
sion d . If d = 2 the action (4.12) is, similarly as (4.3), invariant under the 
transformations of exotic (2 + 1) - dimensional Galilean group. If d > 2 the 
invariance of the nonrelativistic model (4.12) can be achieved by consider
ing quantum Galilean symmetries, with twisted space rotations generated 
by the following nonrelativistic twist 

f$fR=exp?-eijPiAPj. (4.15) 

The formulation of twisted quantum mechanics invariant under twisted 
quantum Galilei group is now under our consideration. 

5. Final Remarks 

We presented in this paper some selected aspects of the theory of noncom-
mutative space-times, with new results on quantum Poincare covariance of 
a class of linearly and quadratically deformed Minkowski spaces. We also 
considered the non-relativistic and relativistic particle models on noncom-
mutative space-time with numerical value of the noncommutativity function 
8^v = "nv a n d have pointed out their twisted quantum covariance. We see 
that the role of quantum deformations is to introduce in place of broken 
classical symmetries a modified transformations which imply the quantum 
covariance. Such a possibility selects only particular class of tensors #Ji„ 
and d\iv in formula (1.1). 

Most of the applications of the noncommutative space-times in the liter
ature assume the choice 0M„ = O^J (see (2.9)). In this talk we presented also 
the results for linear (9}lJ

p =/= 0) and quadratic ( 0 ^ ^ 0) deformations 
of Minkowski space. The extension of particle models on noncommutative 
space-times to linearly and quadratically deformed Minkowski spaces is now 
studied. 
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In 9 , we announced the asymptotic expansion of the G-invariant Bergman 
kernel of the spinc Dirac operator associated with high tensor powers of a 
positive line bundle on a symplectic manifold. In this note, we describe several 
consequences of our asymptotic expansion of the G-invariant Bergman kernel in 
the Kahler case, especially, we study the Toeplitz quantization in the framework 
of the symplectic reduction. The full details can be found in 1 0 . 

1. Toeplitz quantization 

Let (X, UJ) be a compact Kahler manifold with Kahler form w, and 
dime X = n. Let J be the almost complex structure on the real tangent 
bundle TX. Let gTX(v,w) := LJ(V,JW) be the corresponding Riemannian 
metric on TX. 

Let L be a holomorphic line bundle over X with Hermitian metric hL. 
Let VL be the holomorphic Hermitian connection on (L, hL) with curvature 
RL := (VL)2 . We suppose that (L,hL) is a pre-quatum line bundle of 
(X,u), i.e. 

i ? R l — (") 
According the geometric quantization introduced by Kostant and 
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Souriau, the Kahler manifold {X,UJ) is the classical phase space and 
H°(X,L), the space of holomorphic sections of I on X, is the quan
tum space. The set of classical observables is the Poisson algebra ff°°(X), 
the quantum observables are the linear operators on H°(X,L). The semi-
classical limit is a way to relate the classical and quantum observables, 
basically, for any p € N, we replace L by Lp, then we obtain a sequence of 
spaces H°(X, Lp), the semi-classical limit is the process of p —> oo. In this 
note, we will restrict ourself to a family of quantum observables : Toeplitz 
operators. 

Let {, } be the Poisson bracket on (X,2TTU>): for fi,f2 € ^°°{X), if 
£/2 is the Hamiltonian vector field generated by f2 which is defined by 
27ri{/2 u = df2, then 

{fiJ2}(x) = (t;f2(dfi))(x). (1.2) 

Let dvx be the Riemannian volume form of (X,gTX), then dvx = 
uin/n\. We define the £2-scalar product ( ) on tf°°(X, Lp) by 

(si,s2)= / {si,s2)Lp(x)dvx(x). (1.3) 
Jx 

Let lip denote the orthogonal projection from (L2(X,LP),( )), the 
space of L2 sections of Lp on X, to H°(X,LP), the space of holomorphic 
sections of Lp on X. 

For any / G ̂ °°{X), consider the Toeplitz operators 

Tp(/) = n p / n p : H°(X, Lp) -> H°(X, Lp). (1.4) 

We denote by ||TP(/)|| the operator norm of Tp(f) with respect to the scalar 
product ( ). 

We now state two results of Bordemann-Meinrenken-Schlichenmaier2, 
concerning the asymptotic behavior of Tp(f) as p —> +oo. 

Theorem 1.1. As p —* +oo, one has 

lim ||r„(/)|| = U/IU (1.5a) 
p—t+oo 

[Tp(f), TP(g)} = -j=^Tp({f> 9)) + 0(P~2)- (L5b) 

2. Hamiltonian action and symplectic reduction 

Let E be a holomorphic vector bundle on X with Hermitian metric hE. 
Let V B be the holomorphic Hermitian connection on (E,hE). Let G be a 
compact connected Lie group. Let g be the Lie algebra of G. 
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Suppose that G acts holomorphically on X, and the action of G lifts 
holomorphically on L, E and preserves the metrics hL,hE. Then the action 
of G preserves u, the connections V L , V B . 

For K e g, we denote by Kx the vector field on X generated by K, and 
by LK the infinitesimal action induced by K on the corresponding vector 
bundles. Let /x: X —> g* be defined by 

27rv
/rT/z(JFO := V&* -LK, K& g. (2.1) 

Then ^ is the corresponding moment map, i.e. for any K £ g, 

d/x(X) = iKxw. (2.2) 

Definition 2.1. The Marsden-Weinstein symplectic reduction space 
XQ is defined to be 

XG = M-1(0)/G. (2.3) 

Basic assumption: 0 € g* is a regular value of the moment map /i : X —> 

8*. 
Then yii_1(0) is a closed manifold. For simplicity, also assume that G 

acts on n~1(0) freely, then XQ is a compact smooth manifold and carries 
an induced symplectic form U>G-

Moreover, J induces a complex structure J a on TXQ such that 
UG{-,JG-) determines a Riemannian metric gTX° on TXQ. Thus 
(XG,U>GI JG) is also Kahler. 

The line bundle (L,hL) induces a Hermitian line bundle ( L G , / I L G ) on 
XQ by identifying G-invariant sections of L on /i_1(0). In fact (LQ, hLa) is 
a pre-quantized holomorphic line bundle over (XG,^>G), cf. 5 . 

In the same way, (E, hE) induces a holomorphic Hermitian vector bundle 
{EG,hEa) <m Xa. 

3. Toeplitz quantization and symplectic reduction 

We now assume that a connected compact Lie group acts on (X, w, J, L) in 
a Hamiltonian way as before. 

Let i : /x_1(0) •—> X denote the canonical embedding. We assume as 
before that 0 is a regular value of ^ and G acts on /x_1(0) freely. Then 

7 r : M - 1 ( 0 ) ^ X G 

is a principal fibration with fiber G. 
Let H°(X,Lp ® E)G be the G-invariant part of H°{X,LP ® E), the 

space of holomorphic sections of Lp <g> E on X. Let '^'°°(X, Lp ® E)G (resp. 
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<tf°°(n-1(0),Lp ® E)G) be the G-invariant smooth sections of V ® E on 
X (resp. M _ 1 ( 0 ) ) . Let nG : ̂ o o ( / i -

1 (0 ) ,L p ® E)G -* ^°°(XG,LP
G^EG) be 

the natural identification. By a result of Zhang13, for p large enough, the 
map 

nG o i* : ^°°(X, Lp ® £ ) G -> ? ° ° ( Z G , L G ® £ G ) 

induces a natural isomorphism 

ap = nG o i* : H°(X, V ® £ ) G -» ff0(XG, LG ® EG). (3.1) 

(When i? = C, this result was first proved by Guillemin-Sternberg5.) 
Let dvxo be the Riemannian volume form on (XG,gTXa). Let HG,P be 

the orthogonal projection from cif00(XG, LG®EG) (with the scalar product 
( ) induced by hLa,hEa and dvxG as in (1.3)), onto H°(XG, LG ® EG). 

Definition 3 .1 . A family of operators Tp : H°(XG,LG ® EG) -> 
H°(XG, L G ® EG) is a Toeplitz operator if there exists a sequence of sec
tions gi £ C^'°°(XG, End (EG)) with an asymptotic expansion g(-,p) of the 
form T,ZoP~l9l(x) + ^(P~°°) i n t h e ^°° topology such that 

rp = nG,pff(-,p)nG,p + ^(p-°°). (3.2) 

We call go(x) the principal symbol of Tp. 

For any x e XG, let vol(7r_1(a;)) be the volume of the orbit n~1(x) 
equipped with the metric induced by gTX. We define the potential function 

h{x) = y/vo\(ir-l{x)). (3.3) 

For any p > 0, let PG denote the orthogonal projection from 
{V°°(X, LP ® E), ( )) to H°(X, LP ® E)G. Set 

aG = apP
G : W°(X, V ® £ ) - / / ° (X G , L£ ® £ G ) . (3.4) 

Let 

(aG)* : ff°(XG, L G ® £ G ) -> tf°°(X, i p ® £ ) 

denote the adjoint of ap. 

Theorem 3.1 . For any f £ tf°°(X,End(E)), let fG € ^°°(XG,End(EG)) 
denote the associated G-invariant section defined by fG(x) = 
JGgf(g~1x)dg, here dg is a Haar measure on G. Then 

Tp(f) = p-^afna0)* •• H°(XG, LG ® EG) - H°(XG, LP
G ® EG) 

(3.5) 
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is a Toeplitz operator with principal symbol 2 "2 j^(x). Especially, 

rp(f) = n G ) P 2 ^ ^ n G , p + 0(i/P) (3.6) 

as p —• +00. In particular, p~d'mG^2aG(crG)* is a Toeplitz operator with 
principal symbol 2 d i m G / 2 / / i 2 . 

Corollary 3.1. For any / i , / 2 S <€°°{X), we identify them as sections of 
End(£') by multiplications, then one has 

odimG f fG fG ) 
[Tp(A),rp(/2)] = _ n G , p | ^ , ^ j n G , p + ^ ( P - 2 ) . (3.7) 

One can view this corollary as a generalization of the Bordemann-
Meinrenken-Schlichenmaier theorem, Theorem 1.1, in the framework of ge
ometric quantization. If E = C and G = {1}, Corollary 3.1 is (1.5b). If 
G = {1} and general E, Corollary 3.1 was obtained in 7, 8 . 

On the other hand, if one defines the unitary operator 

Ep = ( ^ ) > « ( < 7 « r ) - 1 / 2 : H°(XG,LG ® EG) - V°°{X,W®E), (3.8) 

then one has the following result: 

Theorem 3.2. For any f £ tf°°(X,End{E)), 

T°(f) = S ; / S p : H°(XG, LG ® EG) - H°(XG, LP
G ® EG) (3.9) 

is a Toeplitz operator on XG with principal symbol fG. 

R e m a r k 3.1 . If E = C, Paoletti11 also claimed that p__u5~oG{o~G)* is a 
Toeplitz operator. When G = Tfe is a torus, and -E = C, Theorem 3.2 was 
first proved by Charles3. 

Let (, )LP®EG
 D e the metric on LG ® EG induced by hLa and hE°. 

In view of Tian and Zhang's analytic approach (cf. 12. (3.54)) of geomet
ric quantization conjecture of Guillemin-Sternberg, the natural Hermitian 
product on ^°°(XG, LG<8>EG) is the following weighted Hermitian product 

(si,s2)h= (si,S2)Lp®EG(xo)h2(xo)dvxa(xo). (3.10) 
JxG 

Theorem 3.3. The isomorphism (2p) ^~~ <rp is an asymptotic isometry 

from(H°(X,LP®E)G,(,)) onto (H°(XG,LP
G®EG),(, )h): i.e. if { s * } ^ 
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is an orthonormal basis of (H°(X, Lp <g> E)G, ( , )) , then 

( 2 p ) - ^ (aps
p, aps

P)h = Sij + &{-)• (3 .H) 
J p 

4 . T h e a s y m p t o t i c e x p a n s i o n of t h e G-invariant B e r g m a n 
kernel 

Def in i t ion 4 . 1 . The G-invariant Bergman kernel Pp{x, x') with x, x' G X 

is the smooth kernel of the orthogonal projection Pp : t£°°(X, Lp <g> E) —> 

H°(X, LP <g> E)G with respect to dvx(x'). 

Our proof of the results in Section 3 relies on the asymptotic behavior 

as p —> +oo of the G-invariant Bergman kernel Pp{x,x'). We now describe 

some behavior of PG(x,y), as p —> +oo. 

Let U be an arbitrary (fixed) small open G-invariant neighborhood of 

/u - 1 (0) . At first, we have tha t for any x, x' G X \ U, as p —> +oo, 

liffozOk-^Cp-00). (4.1) 
This result shows tha t when p —»• +oo , Pp{x,x') "localizes" near / i _ 1 (0 ) 

(and thus close to XG)- The main technical result of 9 . Theorem 2.2, and 10 . 

Theorem 0.2 is the asymptotic expansion of PG(x,x') for x, x' G U when 

p —> oo whose proofs use techniques adapting from the works of Bismut-

Lebeau x, Dai-Liu-Ma4 and Ma-Marinescu6 . One key step is to deform the 

Laplacian of the spin0 Dirac operator by a Casimir type operator. We refer 

the readers to 9 , 10 for the details. 
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A general formula for the topology and H-flux of the T-duals of type II string 
theories with H-flux on toroidal compactifications is presented here. It is known 
that toroidal compactifications with H-flux do not necessarily have T-duals 
which are themselves toroidal compactifications. A big puzzle has been to ex
plain these mysterious "missing T-duals", and our paper presents a solution to 
this problem using noncommutative topology. We also analyze the T-duality 
group and its action, and illustrate these concepts with examples. 

T-duality is a symmetry of type II string theories that involves exchang
ing a theory compactified on a torus with a theory compactified on the dual 
torus. The T-dual of a type II string theory compactified on a circle, in the 
presence of a topologically nontrivial NS 3-form H-flux, was analyzed in 
special cases in 2-5-7 . There it was observed that T-duality changes not 
only the H-flux, but also the spacetime topology. A general formalism for 
dealing with T-duality for compactifications arising from a free circle action 
was developed in 8 . This formalism was shown to be compatible with two 
physical constraints: (1) it respects the local Buscher rules 1, and (2) it 
yields an isomorphism on twisted K-theory, in which the Ramond-Ramond 
charges and fields take their values 1 1 _ 1 3 . It was shown in 8 that T-duality 
exchanges the first Chern class with the fiberwise integral of the H-flux, 
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thus giving a formula for the T-dual spacetime topology. In this note we 
will present an account for physicists of the results in 16, consisting of a 
formula for the T-dual of a toroidal compactification, that is a theory com-
pactified via a free torus action, with H-flux. One striking new feature that 
occurs for higher dimensional tori is that not every toroidal compactifica
tion with H-flux has a T-dual; moreover, even if it has a T-dual, then the 
T-dual need not be another toroidal compactification with H-flux. A big 
puzzle has been to explain these mysterious "missing T-duals", and our 
paper presents a solution to this problem using noncommutative topology. 
A similar phenomenon was noticed in 15 in the special case of the trivial T2 

bundle over T with non-trivial iJ-flux. We also show that the generalized 
T-duality group GO(n, n; Z), n being the rank of the torus, acts to generate 
the complete list of T-dual pairs related to a given toroidal compactifica
tion with H-flux. We will explain these results by providing examples and 
applications. 

In this letter we will consider type II string theories on target d-
dimensional manifolds X, which are assumed to admit free, rank n torus 
actions. While for most physical applications one wants d = 10, we do not 
need to assume this, and in fact X could represent a partial reduction of 
the original 10-dimensional spacetime after preliminary compactification in 
10 — d dimensions. The space of orbits of the torus action on X is given by 
a (d — n)-dimensional manifold, which we call Z. The freeness of the action 
implies that each orbit is a torus and that none of these tori degenerate. As 
a result X is a principal torus bundle over the base Z, and so its topology 
is entirely determined by the topology of the base Z together with the first 
Chern class c of the bundle X ^-> Z in H2(Z,Zn). This viewpoint is useful 
in that it automatically identifies some gauge equivalent configurations, ex
cludes configurations not satisfying some equations of motion and imposes 
the Dirac quantization conditions. The Chern class c is represented by a 
vector valued closed 2-form with integral periods, the curvature F. We will 
discuss conditions under which the pair (X -̂ > Z, H) has a T-dual, either 

another pair (X ^Z,H#) with the same base Z (the "classical" case) or 
a more general non-commutative object (the "nonclassical" case). In both 
cases, there should be a sense in which string theory on the original space 
X (with H-flux H) is equivalent to a theory on the T-dual. 

Basic setup: Let p: X —• Z be a principal T-bundle as above, where 
T = (S1)" = Tn is a rank n torus. Let H G H3(X,Z) be an H-flux on 
X satisfying L*H = 0, L* : H3(X,Z) -> H3(T,Z), where i: T --> X is the 
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inclusion of a fiber. (This condition is automatically satisfied when n < 2.) 

The simplest case when the condition t*(H) = 0 does not apply is 
X = T3, when considered as a rank 3, principal torus bundle over a point, 
with H-flux a non-zero integer multiple of the volume 3-form on T3. When 
t*{H) ^ 0, there is no T-dual in the sense we are considering, even in what 
we call the "nonclassical" sense. 

It turns out that nontrivial bundles are always T-dual to trivial bundles 
with non-zero H-flux. Therefore we will need to include the fluxes H and H* 
in our toroidal compactifications, which are then topologically determined 
by the triples (Z, c, H) and (Z, c#, H#), where H and H# are closed three-
forms on the total spaces X and X * respectively. 

Our results on classical T-duals: Suppose that we are in the basic setup 
as above. Choose a basis {T^}^=1 , k = Q) for H2(T,Z) consisting of 2-tori, 
and push this forward into H2(X, Z) via t*. We can consider the cohomology 
classes 

f H = HnL*(T2
i)eH\X,Z). 

These classes restrict to 0 on the fibers, since t*(H) — 0. Using the following 
exact sequence, derived from the spectral sequence of the torus bundle, 

0 -» H\Z, Z) ^ Hl{X, Z) ^ H\T, Z) -» • • • , (1) 

we see that the classes J"T2 H = H n t*(T^) 6 H1(X,Z) come from unique 

classes {/3j}^=1 inH\Z,T). Set 

p,(H)=(/3i, . . . , /? f c)etf1(Z,Z f c). (2) 

If p\{H) = 0 6 H1(Z,Zk), and in particular if Z is simply connected, then 
there is a classical T-dual to (p,H), consisting of p*: X # —> Z, which 
is another principal T-bundle over Z, and H# G H3(X#,Z), the T-dual 
H-flux on X * . One obtains a commuting diagram of the form 

XxzX* (3) 

X X* 
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In this case, the compactifications topologically specified by (Z, c, H) and 
(Z,c#,H*) are T-dual if c, c* G H2(Z,Zn) are related as follows: 

Let Cj, j = ].,••• ,n, be the components of c. Let Xj —^ Z be the 
principal T n _ 1 subbundle of X obtained by deleting Cj, i.e. the Chern class 
of Xj is 

c(Kj) = (ci,...,Cj,...,Cn). 

Then X ?U Xj is a principal S1 -bundle whose Chern class is equal to 
w# # 

•Kj(cj). Define Xf —̂-> Z, X * -?-* Xj etc. similarly. Then we have 

(*iY{cf) = {pMH) and (irfr(cj) = (pf)i(H#). 

Here the correspondence space X Xz X# is the submanifold of X x X * 
consisting of pairs of points (x,y) such that p{x) = p*(j/), and has the 
property that it implements the T-duality between (p,H) and (p* , i f*) . 
It also turns out that p*(H*) = 0 G Hl(Z,Zk) and that the T-dual of 
(p#, H&) is (p, H). So in this case, T-duality exchanges the integral of the 
H-flux (over a basis of circles in the fibers) with the first Chern class. The 
condition in the result above determines, at the level of cohomology, the 
curvatures F and F # . However the NS field strengths are only determined 
up to the addition of a three-form on the base Z, because the integral of 
such a form over a basis of circles in the fibers vanishes. This settles a 
conjecture in 8 , and was also considered by 9. 

The simplest higher rank example is X = S2 x T2, considered as the 
trivial T2 bundle over Z — S2, with H-flux equal to H = k\a A b\ + k^a A 
62, where we use the Kiinneth theorem to identify H3(S2 x T2 ,Z) with 
H2(S2,Z) <g> J f ^ T ^ Z ) , and a is the generator of H2{S2,Z) ^ Z, bub2 

are the generators of H1^2,^) S Z2 and ki,k2 G Z. Since S2 is simply 
connected, p\(H) = 0 and the T-dual of (S2 x T2,H) is the nontrivial 
rank 2 torus bundle P over S2 with Chern class c\(P) = (k\a,k2a) G 
H2(S2,Z) © H2(S2,Z) = H2(S2,Z2), and with H-flux equal to zero. This 
example generalizes easily by taking the Cartesian product with a manifold 
M, and pulling back the iJ-flux to the product and arguing as before, we 
see that the T-dual of (M x S2 x T2, H) is (M x P, 0). 

Our results on nonclassical T-duals: Suppose that we are in the basic 
setup as above. If p\(H) ^ 0 € H1(Z,Zh), then there is no classical T-dual 
to (p, H); however, there is a nonclassical T-dual consisting of a continuous 
field of (stabilized) noncommutative tori Af over Z, where the fiber over the 
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point z £ Z is equal to the rank n noncommutative torus ^4/(z) (see Figure 
1 below). Here f: Z —* Tfe is a continuous map representing p\{H). 

Fig. 1. In the diagram, the fiber over z G Z is the noncommutative torus Af,z\, 
which is represented by a foliated torus, with foliation angle equal to f(z). 

This suggests an unexpected link between classical string theories and 
the "noncommutative" ones, obtained by "compactifying" matrix theory 
on tori, as in 4 (cf. also 19 ). We now recall the definition of the rank 
n noncommutative torus Ag, cf. 18. This algebra (stabilized by tensoring 
with the compact operators K) occurs geometrically as the foliation algebra 
associated to Kronecker foliations on the torus 3. In 4, the same algebra 
occurs naturally from studying the field equations of the IKKT (Ishibashi-
Kawai-Kitazawa-Tsuchiya) model compactified on n-tori, or from the study 
of BPS states of the BFSS (Banks-Fisher-Shenker-Susskind) model. (The 
IKKT and BFSS models are both large-TV matrix models in which Poisson 
brackets in the Lagrangian are replaced by matrix commutators.) For each 
6 G Tfc, identified with a hermitian matrix 8 = (9ij), i,j — 1 , . . .n, 9ij £ 
S1 with l's down the diagonal, the noncommutative torus Ag is defined 
abstractly as the C*-algebra generated by n unitaries Uj, j = 1 , . . . ,n in 
an infinite dimensional Hilbert space satisfying the commutation relation 
UiUj — 9ijUjUi, i,j = l,...,n. Elements in Ag can be represented by 
infinite power series 

/ = £ amUm, (4) 
mgZ" 

where am £ C and Um = C/j"1 . . . U™", for all m = {mu . . . , m„) € Z n . 
A famous example of a principal torus bundle with non-T-dualizable 

H-flux is provided by T3, considered as the trivial T2-bundle over T, with 
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H given by k times the volume form on T3. H is non T-dualizable in the 
classical sense since p\(H) ^ 0 € i / 1(T,Z). Alternatively, there are no 
non-trivial principal T2-bundles over T, since H2(T,I?) — 0, that is, there 
is no way to dualize the H-flux by a (principal) torus bundle over T, cf. 
7. This is an example of a mysteriously missing T-dual. This example is 
covered by our result on nonclassical T-duals above. The T-dual is realized 
by a field of stabilized noncommutative tori fibered over T. Let H = L2(T) 
and consider the the projective unitary representation pg: 1? —» PU(W) in 
which the generator of the first Z factor acts by multiplication by zk (where 
T is thought of as the unit circle in C) and the generator of the second Z 
factor acts by translation by 6 S T. Then the Mackey obstruction of pg is 
9k £T = H2(Z2, T). Let K(H) denote the algebra of compact operators on 
7i and define an action a of Z2 on continuous functions on the circle with 
values in compact operators, C(T, K(H)), given at the point 6 by pg. Define 
the C*-algebra B, which is obtained by inducing the Z2 action to an action 
of M2 on B = Ind$ (C(T,/C(W)),a), i.e. B = {/ : R2 - • C(T,/C(W)) : 
f(t + g) = a(g)(f(t)), t eR2,g € Z 2}. Then B is a continuous-trace C*-
algebra having spectrum T3 and Dixmier-Douady invariant H. B also has 
an action of R2 whose induced action on the spectrum of B is the trivial 
bundle T3 —> T. Then our noncommutative T-dual is the crossed product 
algebra B x R 2 ^ C(T,K{H)) x Z2 = Af , which has fiber over 6 £ T given 
by /C(W) Xpe Z

2 = Ag ® tC(H,) where Ag is the noncommutative 2-torus. 
In fact, the crossed product B x R2 is isomorphic to the (stabilized) group 
C*-algebra C*(H%,) <g> K., where H% is the integer Heisenberg-type group, 

\(lXb\ 1 
Hz= I 0 1 y \ :x,y,z£Z\. (5) 

In summary, the nonclassical T-dual of (T3, H = k) is Af = C*(Hz) ® /C. 
As required in order to match up RR charges, the AT-theory of this algebra 
is the same as the ivT-theory of T3 with twist given by our H-flux, or k times 
the volume form. 

This example generalizes easily by taking the Cartesian product with a 
manifold M. Pulling back the //-flux to the product and arguing as before, 
we see that (M xT 3 , H = k) is T-dual to C(Af )<g>C*(.Hz)®/C. For instance, 
if the dimension of M is seven, then M x T3 is ten dimensional, yielding 
examples of spacetime manifolds that are relevant to type II string theory. 

It is important to realize that a fixed space X can sometimes be given the 
structure of a principal torus bundle over Z in many different ways. For 
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example, given a free action of a torus T = Tn on X, with quotient space 
Z = X/T, we can for every element g G Aut(Tn) = GL(n, Z) define a new 
free action of T on X, twisted by g, by the formula x -g t = x • g(t). (Here 
t G T, • is the original free right action of T on X, and -g is the new twisted 
action.) If c G H2(Z,Zn) was the Chern class of the original bundle, the 
Chern class of the g-twisted bundle is g • c, with g acting via the action of 
GL(n,Z) o n Z " . 

The group GL(n,Z) embeds in 0 (n ,n ;Z) , the subgroup of GL(2n,Z) 

preserving the quadratic form defined by I ™ I, via a i—> I t 1 I (see 

10 ). This larger group 0(n, n; Z) is often called the T-duality group. In fact 
we will consider the still larger generalized T-duality group GO(n, n; Z) = 

0(n, n; Z) x (Z/2) of matrices in GL(2n, Z) preserving the form ( " 

up to sign. Good references for the T-duality group include 10 (for the state 
of the theory up to 1994) and 14 for more current developments. 

Our results on the T-duality group: Suppose that we are in the basic 
setup as above, with Z simply connected, so that one is always guaranteed to 
have a classical T-dual. Then the generalized T-duality group GO(n,n;7,) 
acts on the set of T-dual pairs {p,H) and (p&,H&) to generate all related 
T-dual pairs. All of these pairs are physically equivalent. The restriction 
of the action to GL(n, Z) (as embedded above) corresponds to twisting of 
the action on the same underlying space as above. When Z is not simply 
connected and p\ (H) j^ 0, it is not clear that one has an action of the full 
T-duality group. But the action ofGL(n,Z) always sends the pair consisting 
of (p, H) and its nonclassical T-dual to another nonclassical pair, involving 
continuous fields of (stabilized) noncommutative tori over Z. 

We illustrate the action of the generalized T-duality group in the sim
plest case of circle bundles with H-flux, in which case the generalized T-
duality group reduces to GO{\, 1; Z), a dihedral group of oder 8. 

Consider the example of the 3 dimensional lens space L(l,p) = 5 3 /Z p , 
with H-ftux H = q times the volume form, cf. 17. Here p,q G Z, and ini
tially we take p, q > 0. Then L(l, p) is a circle bundle over the 2-dimensional 
sphere 5 2 and has first Chern class equal to p times the volume form of 
S2. Then, as shown in 8 , (L(l,p),H = q) and (L(l,q),H = p) are T-

dual to each other, and the element ( ) of 0 (1 ,1 ; Z) interchanges them. 
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The element I 1 of the T-duality group 0(1,1;Z) lies in the sub

group GX(1,Z), embedded as above, and acts by twisting the S1 action 
on L(l,p). This twisted action makes L(l,p) into a circle bundle over S2 

having first Chern class equal to — p times the volume form of S2. This 
bundle is denoted L(l, —p), and its total space is diffeomorphic to L(l,p), 
though by an orientation-reversing diffeomorphism. Therefore the action of 

I ) on the pair (L(l,p),H = q) and (L(l,q),H = p) gives rise to a 

new T-dual pair (L(l,—p),H = —q) and (L(l,—q),H = —p). The group 
GO (1,1; Z) is generated by the two elements of 0 (1 ,1 ; Z) just discussed and 

by I 1, which replaces the original T-dual pair by the pair consisting 

of (L(l,p),H = —q) and (L(l,—q),H = p). Here we have tacitly assumed 
p, q > 2; we can extend things to other values of p and q by making the 
convention that L ( l , l ) = S 3 and L(1,0) = S2 x S1. This refines the T-
duality in 8 . Thus in general there are 8 different (bundle, H-flux) pairs 
with equivalent physics, corresponding to (±p,±q) and (±q, ±p). 

This example generalizes easily by taking the Cartesian product with a 
manifold M. For instance, if the dimension of M is seven, then we obtain 8 
different (bundle, H-flux) pairs in the same G0(1,1; Z)-orbit as Mx L(l,p). 
All of these are ten-dimensional spacetime manifolds relevant to type II 
string theory. 

We end with some open problems. A critical verification of any proposed 
duality is that the anomalies should match on both sides. This was checked 
for T-duality involving circle bundles with H-flux in 8 , but remains to be 
analyzed in the general torus bundle case with H-flux. It also remains to 
be determined whether or not the group GO(n, n; Z) also operates in the 
nonclassical case. Another problem is to extend our results to non-free torus 
actions 20, in which case it could be relevant to mirror symmetry. 
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The Murphy operators in the Hecke algebra Hn are commuting elements which 
arose originally in an algebraic setting in connection with representation theory. 
They can be represented diagrammatically in a Homfly skein theory version 
of Hn. Symmetric functions of the Murphy operators are known to lie in the 
centre of Hn. Diagrammatic views of these are given which demonstrate their 
algebraic properties readily, and how analogous central elements can be con
structed diagrammatically in some related algebras. 

Introduction 

This article is based closely on a talk given at the meeting on Differential 
Geometric Methods in Theoretical Physics on the occasion of the opening 
of the new building for the Nankai Institute of Mathematics. More detailed 
accounts of the results described during the talk can be found in the refer
ences noted. 

I first heard about the Murphy operators on my previous visit to Nankai 
ten years ago for a statistical mechanics satellite meeting. At that meeting 
Chakrabarti gave a talk about the properties of what he termed the 'fun
damental element' which generated the centre of the Hecke algebra Hn

3. 
At that time Aiston and I had been studying geometrically based models 

for Hn in terms of the group Bn of n-string braids, and I initially expected 
that his fundamental element must be represented by the well-known gen
erator for the centre of the braid group, namely the full twist braid A2. 
However it soon became clear that Chakrabarti was referring to a differ
ent, and more useful, element of Hn, with the algebraic feature that it had 
distinct eigenvalues on the different irreducible submodules of Hn. 

Chakrabarti then told me that this element was the sum of the Murphy 
elements (Murphy operators) in Hn. These are elements which have their 

http://mortonQliv.ac.uk
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origin in work of Jucys2 and subsequently Murphy8. 
Having been introduced to these elements, Aiston and I looked at them 

in our geometrical model in order to understand them in that context, and 
to see if their algebraic properties could be readily established there. 

While we were able to understand their basic appearance, and establish 
the eigenvalue property quite quickly5 it was not until a few years later 
that I came across a more satisfactory geometric way to represent them, 
and a particularly striking way to produce their sum as an obviously central 
element in Hn

4. 
This in turn led me to a natural description for other central elements, 

and similar descriptions of central elements in some natural extensions of 
the Hecke algebras. 

A further consequence of the eigenvalue property led me also to a very 
helpful way of identifying the elements in a natural combinatorial model 
constructing 2-variable knot invariants which correspond neatly to the in
variants produced by irreducible quantum SL(N) modules. 

I shall give here a brief account of the Jucys-Murphy elements in an 
algebraic context, before describing the geometric models for Hn and for 
the further construction. 

1. Murphy operators in Hecke algebras 

The Hecke algebra Hn is a deformed version of the group algebra C[5„] of 
permutations. Jucys2 and Murphy8 studied certain sums of transpositions 
m(j) e C[5„]. 

m(2) = (12) 

m(3) = (13) + (2 3) 

m(4) = (14) + (2 4) + (34) 

3-i 
TOC?) = ^(ij) 

i=l 

These elements have the following two properties: 
1. The elements m(j) commute. 
2. Every symmetric polynomial in them, for example their sum, or the 

sum of their squares, lies in the centre of the algebra. 
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Dipper and James1 found corresponding elements M(j) in Hn which 
they named the Murphy operators, having similar properties: 

1. The elements M(j) commute. 
2. Every symmetric polynomial in them lies in the centre of Hn. 

The Hecke algebra Hn can be readily presented as linear combinations 
of n-string braids subject to a simple linear relation depending on a single 
parameter z. 

The elementary braids of1 when composed by placing one below an
other will generate all n-braids. Here 

o% = 
W" TIF 

is the braid on n strings in which string % crosses string i + 1 once in the 
positive sense. 

They satisfy Artin's braid relations 

OiO-j = o-jO-j, \i - j \ > 1, 

0~i°~i+lO~i = (Ti+lCTiCTi+i, 

Elements of Hn can be regarded as linear combinations of braids on 
which we impose the further quadratic relations 

of = ZOi + 1. 

These relations can be visualised in the form <jj — o~ = z as 

Tiimilf k.kkkk if 

Setting the parameter z = 0 gives <Tj = o~ and reduces each braid 
to the permutation defined by following its strings, when <7j becomes the 
transposition (ii +1). The elements M(j) were based on a choice of braids 
which each reduce to individual transpositions when z = 0. 

Ram9 pointed out that these could be combined into a single braid 

T(j) 
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to represent each M(j), up to linear combination with the identity. 
Explicitly T(j) = 1 + zM(j). So long as z ± 0 the elements T(j) will 

do equally well in place of M(j). 
The geometric braids T(j) clearly commute. Their product is the full 

twist braid A2 which commutes with all braids, and so lies in the centre 
of Hn. It is not immediately clear however that their sum, or any other 
symmetric function of them is central. 

2. A skein theory version 

I shall now construct a model of Hn based on more general diagrams which 
will provide a simple representative for the sum. In this wider context, 
known as skein theory, we work with pieces of oriented knot diagrams, lying 
with some prescribed boundary conditions in a fixed surface F. Diagrams 
consist of arcs respecting the boundary conditions along with further closed 
curves, and may be altered by sequences of the standard Reidemeister moves 
Rn and Rm. The moves can be interpreted as the natural physical moves 
allowed on pieces of ribbon representing the curves. 

The skein S(F) consists of formal linear combinations of diagrams in F 
(sometimes known as tangles) modulo two linear relations 

a) x - X -(—-») t 
and (2) V ) =»"' 1 

between diagrams which differ only as shown. The coefficient ring can be 
taken as A = Z[w±x, s±:L] with powers of sk — s~k in the denominators. 

Theorem 2.1. (Morton-Traczyk7) The skein of the rectangle with n input 
points at the bottom and n output points at the top is the Hecke algebra Hn, 
with scalars extended to A and z — s — s~1. 

Any diagram in the rectangle can be reduced to a A-combination of braids 
by use of relations (1) and (2). For braids, the relation (1) becomes the 
algebraic relation o~i = a~l = z. 

The algebra composition in the skein version of Hn is given by placing 
diagrams one below the other, as for braids. We can then exhibit lots of 
diagrams which belong to the centre of Hn in this model. 
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For a start the diagram 

yC") = 

is central. 
This can be readily seen, since any diagram A can be passed through 

using only Reidemeister moves II and III. 

For 
A 

II II 

Theorem 2.2. (Morton4) T^ is the sum of the variant Murphy operators 
T(j), up to linear combination with the identity. 

This result depends essentially on a repeated application of the skein 
relation (1), leading to the equation 

j . ( n ) _ 
*~*—wt 

o 
Replacing the encircling curve in T^ by a more complicated combina

tion of diagrams 

44 4 

gives a huge range of further central elements. 
The choices for X are best thought of as elements in the skein C of the 
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annulus without prescribed boundary points, for example 

X 

There is a nice choice Xm for each m which gives the sum of the mth 
powers of the Murphy operators T(j) in Hn no matter what n may be4. 
It is then possible to produce any symmetric polynomial in T(j) from a 
suitable choice of X. 

In the same spirit, algebras HntP can be constructed as the skeins based 
on the rectangle with inputs and outputs arranged as shown, 

4 n 4 I P + 

4 m 
where elements are again composed by placing one below the other. There 
is again a large choice of similarly constructed elements 

A A 

in the centre of the algebra. These can all be expressed as supersymmetric 
polynomials in two families of commuting elements in the algebra which 
can be considered as an analogue of Murphy elements in this setting. 

Even where the basic skein relation is altered, for example to Kauffman's 
4-term relation on non-oriented diagrams, similar diagrams to these will 
give central elements. In this setting too these central elements may be 
interpreted as polynomials in some form of Murphy elements. 

3. The annulus 

Representation theory of Hecke algebras also leads naturally to the skein 
of the annulus. We are interested in finding trace functions on Hn, namely 
linear functions tr to a commutative algebra such that ti(AB) = tr(BA). 
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The character of a matrix representation has this property, but we need 
not restrict the image of the function to be the scalars. 

Any diagram T in Hn can be closed to give a diagram T in the annulus, 
as shown, with the property that AB = BA. This procedure respects the 
skein relations, and so determines a A-linear map ": Hn —> C to the skein 
of the annulus. Now C is a commutative algebra, so the closure map is 
a trace function on Hn, and its composite with any linear function on C 
will determine further trace functions. Indeed it is possible to construct all 
irreducible characters of Hn by suitable linear functions on C. 

Write Cn C C for the image of Hn, and define the meridian map <p : 
Cn —* Cn diagrammatically by 

Thus if X = A then <p{X) = AT&). If AT^ = cA then A is an eigenvector 
of <p with eigenvalue c. 

Theorem 3.1. The meridian map ip has no repeated eigenvalues. 

Aiston and I5 gave a direct proof of this by exhibiting suitable choices 
of A. The result can be interpreted as a different angle on Chakrabarti's 
observation about the action of the sum of the Murphy operators on Hn. 

Indeed when the meridian map is extended over all diagrams in the 
annulus to give ip : C —> C it still has no repeated eigenvalues6. In Cn the 
eigenvectors correspond to partitions of n, and the subspace of C spanned 
by the union of C„ for all n can be interpreted as the representation ring of 
SL{N) for large N. In this context the eigenvectors match up well with the 
irreducible representations, and give well-adapted skein theoretic elements 
Qx for each X\- n. These can be used to provide a 2-variable invariant of 
a knot for each partition A that yields the irreducible 1-variable quantum 
SL(N) invariants for each AT by a simple substitution. Eigenvectors for 
the meridian map in the whole skein of the annulus correspond to pairs 
A, [i of partitions, and again give natural 2-variable invariants which are 
well-adapted to quantum group interpretations6. 
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We briefly review Bethe Ansatz solutions of the integrable open spin- i XXZ 
quantum spin chain derived from functional relations obeyed by the transfer 
matrix at roots of unity. 

1. Introduction 

A long standing problem has been to solve the open spin- | XXZ quantum 
spin chain with general integrable boundary terms, defined by the Hamil-
tonian l'2 

1 A T - l 

n = {̂ E («+i+«+i+chv «+i) (i-i) 
n=X 

+ shrjl c tha_ th/3_cr^ + cscha_ s e c h / ^ c h f l - a f + ish9-a\) 

— cth a+ th (3+<JM + cscha+ sech fi+ (ch d+a% +ish 0+a^) >, 

where ax , ay , az are the standard Pauli matrices, r/ is the bulk anisotropy 
parameter, a± , p± , 6± are arbitrary boundary parameters, and A'' is the 
number of spins. Determining the energy eigenvalues in terms of solutions 
of a system of Bethe Ansatz equations is a fundamental problem, which 
has important applications in integrable quantum field theory as well as 
condensed matter physics and statistical mechanics 3, and perhaps also 
string theory. (For an introduction to Bethe Ansatz, see e.g. Refs. 4, 5, 6.) 

The basic difficulty in solving (1.1) is that, in contrast to the special case 
of diagonal boundary terms (i.e., a± or (3± —> ±00, in which case Ti has 

'Work supported in part by the National Science Foundation under Grant PHY-0244261. 
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a U(l) symmetry) which was solved long ago 7~9, a simple pseudovacuum 
state does not exist. For instance, the state with all spins up is not an 
eigenstate of the Hamiltonian. Hence, many of the techniques which have 
been developed to solve integrable models cannot be applied. 

We observed some time ago 1 0 ' u that, for bulk anisotropy parameter 
values 

^ = ^ 1 - P = l , 2 , . . . (1-2) 

(hence q = ev is a root of unity, satisfying qp+1 = — 1) and arbitrary values 
of the boundary parameters, the model's transfer matrix t{u) (see Sec. 2) 
obeys a functional relation of order p + 1. For example, for the case p = 2, 
the functional relation is 

t(u)t(u + rj)t{u + 2rj) - S(u - rf)t{u + rf)- S(u)t(u + 2rj) 

-5(u + T))t(u)=f(u), (1.3) 

where S(u) and f{u) are known scalar functions which depend on the bound
ary parameters. (Expressions for these functions in terms of the boundary 
parameters in (1.1) are given in Ref. 18.) Similar results had been known 
earlier for closed spin chains.12-14 

By exploiting these functional relations, we have obtained Bethe Ansatz 
solutions of the model for various special cases of the bulk and boundary 
parameters: 

(i) [Refs. 15, 16, 17] The bulk anisotropy parameter has values (1.2); and 
the boundary parameters satisfy the constraint 

a_ + (3- + a+ + /?+ = ±(0_ - 0+) + r,k, (1.4) 

where k G [—(N + 1), iV + 1] is even (odd) if N is odd (even), respec
tively. 

(ii) [Ref. 18] The bulk anisotropy parameter has values (1.2) with p even; 
and either 

(a) at most one of the boundary parameters is nonzero, or 
(b) any two of the boundary parameters {a_, a+, /?_, (3+ } are arbitrary, 

the remaining boundary parameters from this set are either -q or 
in/2, and 0- = 0+. 

(iii) [Ref. 19] The bulk anisotropy parameter has values (1.2) with p odd; 
at most two of the boundary parameters {a- ,a+,(3-,(3+} are nonzero, 
and6L = 0+. 
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All of these cases have the property that the quantity A(u), defined by 

A(u)=f(u)2-4'[l6(u + jr1), (1.5) 
3=0 

is a perfect square. 
Solutions for generic values of the bulk anisotropy parameter and for 

boundary parameters obeying a constraint similar to (1.4) have been dis
cussed in Refs. 20, 21, 22. 

Here we briefly review our results for the cases (i) - (iii). 

2. Transfer matrix 

The transfer matrix t(u) of the open XXZ chain with general integrable 
boundary terms, which satisfies the fundamental commutativity property 
[t(u), t(v)] = 0, is given by 9 

t(u) = tr0 K+(u) T0(u) Ko(u) f0(u), (2.1) 

where Tb(u) and To(u) are the monodromy matrices 

T0(U) = R0N(U)---R01(U), f0(u) = ROI(U) • • • RON{V) , (2.2) 

and tro denotes trace over the "auxiliary space" 0. The R matrix is given 

by 

R(u) = 

fsh(u + r]) 0 0 0 
0 s h u s h 77 0 - . . 
0 shrjshu 0 ' ' [ ' ' 

V 0 0 0 sh(u + ?7), 

where r] is the bulk anisotropy parameter; and K^(u) are 2 x 2 matrices 
whose components are given by l'2 

K^[ (u) = 2 (sh a- ch (3- ch u + ch a_ sh /3_ sh u) 

-^22(u) = 2 (sha_ ch/3_ chu — cha_ sh/3_ shu) 

K^2{u) = e0' sh2u, K^u) = e~e~ sh2u, (2.4) 

and 

K+(u) = K~{-u-rj) (2.5) 

where aT ,(3T,9T are the boundary parameters. The Hamiltonian (1.1) is 
proportional to t'(0) plus a constant. 
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The transfer matrix also has in periodicity 

t(u + in) = t(u), (2.6) 

crossing symmetry 

t(-u - 77) = t(u), (2.7) 

and the asymptotic behavior 

eu(2N+4)+V(N+2) 
t{u) ~ - ch(6L - 6>+) ^ ^ 1 + . . . for u -> 00. (2.8) 

3 . Case (i) 

Our main objective is to determine the eigenvalues A(u) of the transfer ma
trix t(u) (2.1), from which the energy eigenvalues can readily be computed. 
The functional relations for the transfer matrix (e.g., (1.3)) evidently im
ply corresponding relations for A(u). Following Ref. 23, we observe that the 
latter relations can be written as 

detM{u)=0, (3.1) 

where M.(u) is the (p + 1) x (p+1) matrix 

/ A H - T & 0 . . . 0 -h(u) \ 

M{u) = 

h(u+rf) 
-h{u + r,)A(u + rj)-^±^... 0 0 

(3.2) 

V " % ? 0 0 ...-h(u + prj)A(u+pr,)J 

if there exists an i7r-periodic function h(u) such that 

To solve for h(u), we set z(u) = YK-0h(u + jrj), and observe that (3.3) 
implies that z(u) satisfies a quadratic equation 

p 

z{uf - z(u)f(u) + ]J 6(u + jV) = 0 , (3.4) 
j=o 

whose solution is evidently given by 

z(u) = \ ( /(«) ± y/W)) , (3-5) 
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where A(u) is defined in (1.5). If the boundary parameters satisfy the con
straint (1.4), then A(u) is a perfect square, and two solutions of (3.3) are 

/>(*>(.) = - 4 s h 2 > + , ) ^ ± M 

x sh(u ± a-) ch(u ± /?_) sh(u ± a+) ch(w ± /3+). (3.6) 

Let us now label the corresponding matrices (3.2) by M.^\u). 
The condition (3.1) implies that M^^u) has a null eigenvector v^(u), 

Mi±}(u)v^(u) = 0, 

Note that the matrix A4^(u) has the symmetry 

SM^±\u)S-1=Mi±)(u + r]), 

(3.7) 

(3.8) 

where 

/ 0 1 0 . 
0 0 1 . 

0 0 0 . 
\ l 0 0 . 

. 0 0 \ 

. 0 0 

. 0 1 

. 0 0 / 

Sp+1 = I . (3.9) 

It follows that the null eigenvector v^^u) satisfies Sv^^) = v^(u + r]). 
Thus, its components can be expressed in terms of a function Q^^u), 

v^(u) = (Q^(u),Q^(u + r]),...,Q^\u+PV)), (3.10) 

with Q^{u + in) = <5(±)(u). We make the Ansatz 

M<±> 

Q{±)(u) = Yl sh(u - uf}) sh(u + uf} + rj), (3.11) 

which has the crossing symmetry Q^(u) = Q^^—u — rj). Substituting the 
expressions for M^(u) (3.2) and v^(u) (3.10) into the null eigenvector 
equation (3.7) yields the result for the transfer matrix eigenvalues 

Q^iu + ri) 
A<±)(U) = h^(u)Qi^~y + h{±)(-u - v)- (3.12) 

Q(±)(«) ' " Q(±)(u) 

The asymptotic behavior (2.8) implies that M^ = ^(N—l±k), where k is 
the integer appearing in the constraint (1.4). Analyticity of the eigenvalues 
(3.12) implies the Bethe Ansatz equations 

/ l(±)(_u(±)_7 ?) 

g(±) ( u ±) + 7 ? ) 

Q^(uf> -rj) 
j = l,...,Ml±K (3.13) 
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In short, for case (i), the eigenvalues of the transfer matrix (2.1) are given 
by (3.12), where /i (±)(u) and Q W ( M ) are given by (3.6), (3.11) and (3.13). 

In Ref. 17, we have verified numerically that this solution holds also 
for generic values of rj, which is consistent with Refs. 20, 21, 22; and that 
this solution gives the complete set of 2N eigenvalues. To illustrate how 
completeness is achieved, let us consider the case TV = 4. The integer k 
in the constraint (1.4) must therefore be odd, with —5 < A; < 5. The six 
possibilities are summarized in Table 1. 

Table 1. Completeness for N = 4. For each k, there are 24 eigenvalues. 

k 
5 
3 
1 

-1 
-3 
-5 

# eigenvalues given by A(+)(u) 
16 
15 
11 
5 
1 
0 

# eigenvalues given by A' )(u) 
0 
1 
5 
11 
15 
16 

4. Case(ii) 

A key feature of case (i) is that the quantity A(u) (1.5) is a perfect square. 
We therefore look for additional such cases. For p even, we find that A(u) is 
also a perfect square if either (a) at most one of the boundary parameters 
is nonzero; or (b) any two of the boundary parameters {a_,a+,/?_,/?+} 
are arbitrary, the remaining boundary parameters from this set are either 
rj or in/2, and 0_ = 9+. For definiteness, we focus here on the subcase (b) 
with a± arbitrary, (3± = 77 and N even. Unfortunately, the resulting z(u) 
(3.5) is not consistent. To surmount this difficulty, we use a matrix M(u) 
which is different from (3.2), namely 18 

M{u) = 

I A(u) -h(u) 0 . . . 0 -h(-u+pr))\ 
-h(-u) A(u+pr]) -h(u + prj) ... 0 0 

\-h{u + p2r]) 0 0 ...-h(-u - p(p - l)r)) A(u + p2r]) J 

(4.1) 

where h(u) is 2f7r-periodic. This matrix has the symmetry 

SM(u)S~1 = M(u + pv), (4.2) 
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where S is given by (3.9). By arguments similar to those used in Sec. 3, we 
find that the transfer matrix eigenvalues are given by 

A( . )=« .>2^ + «- + «%pl . «.3) 
where h(u) is given by 

h(u) = 4sh 2"(u + r,f^u
+

+
2^ ch\u - V) (4.4) 

x sh(u — a-) sh(u + a+) 
ch (\{u + a- + r))) ch ( | (u — a+ + r))) 

ch ( | (u — a- — rj)) ch (^(u + a+ — r])) 

and Q(w) is given by 

Q(u) = ]Jsh(-{u-uj))sh(-(u + uj-Pr])j , (4.5) 

with M = N + 1p + 1; and the Bethe Ansatz equations are 

h(Uj) =_Q(uj-PV) - = 1 M . ( 4 . 6 ) 

h(-Uj+pq) Qiuj+prf)' 

We have verified numerically the completeness of this solution. The other 
subcases (a) and (b) are mostly similar, t 

5. Case(iii) 

For p odd, we find that the quantity A(u) (1.5) is also a perfect square 
if at most two of the boundary parameters {a_,a+,/3_,/3_|_} are nonzero, 
and 6- = 6+. For definiteness, we focus here on the case with a± arbitrary, 
P± = 0 and N even. As in case (ii), the resulting z(u) (3.5) is not consistent. 
To surmount this difficulty, we again use a matrix A4(u) which is different 
from (3.2), namely 19 

M{u) = 

-hW(u) A(u + ri)-hM(u + r)) ... 0 0 

\-h™(u-rj) 0 0 ...-h^(u+(p-l)j]) A(u + prj) J 

(5.1) 

+ The exception is the subcase (a) with 6± nonzero, for which Q(u) = n?^fi sh(u — UJ), 
which is not crossing symmetric. See Sec. 3.3 in Ref. 18. 
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where h^(u) and h^(u) are i7r-periodic. It has the reduced symmetry 

TM{u)T-1 = M(u + 2r]), (5.2) 

where T = S2, and S is given by (3.9). (While (3.8) implies (5.2), the 
converse is not true.) The condition det M(u) = 0 implies that M{u) has 
a null eigenvector v(u), 

M(u)v(u) = 0, (5.3) 

where v(u) satisfies Tv(u) = v{u-\-2rj). Thus, its components are expressed 
in terms of two independent functions Qi(u), Q2(u): 

v(u) = (Q!(«), Q2(u) ,...,Q1{u-2rf), Q2(u - 2rj)) . (5.4) 

We make the Ansatze 
Mi 

Qi(u) = J ] sh(u - u^) sh(u + uf] + v), 

M2 

Q2(u) = J ] sh(u - uf]) sh(u + uf + 3rj). (5.5) 

Substituting the expressions for M(u) (5.1) and v(u) (5.4) into the null 
eigenvector equation (5.3) yields two expressions for the transfer matrix 
eigenvalues, 

AC x _ S{u) Q2(u) 5{u-rj) Q2{u-2rj) 
[U> hW(u) Qi(u) ft(2)(u - r/) Qi(«) ' 

Q2{u-r)) Q2{u-rj) 

Analyticity of these expressions leads to the Bethe Ansatz equations 

j = 1 ,2 , . . . , M j , 

ftWfof) = Q1(nf)+2T?) 
/l(2)(Uf+77) _ Ql(«f}) 

j = l , 2 , . . . , M 2 . ( 5 . 7 ) 

We expect that there are sufficiently many equations to determine all the 
zeros {iij ,uj- '} of Q\{u) ,Q2(u), respectively. Functions /i^'(w) (with 
h^\u) = h^\—u — 2rj)) which ensure the condition det.M(u) = 0 are 
given by 

h^(u)=4sh2N(u + 2r]), M2 = | j V + | ( 3 p - l ) , Mi = M2 + 2 , 

p = 3 , 7 , l l > . . . (5.8) 
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and 

' - 2 ch(2u) sh2 u sh2iV(u + 2rj), Mi = M2 = ±N + 2p - 1, 
p = 9 , 1 7 , 2 5 , . . . 

( 1 ) . . _ I 2ch(2u)sh2ush2JV(u + 27/), Mi = M2 = %N + §(p - 1), 
( U ) - 1 p = 5 , 1 3 , 2 1 , . . . 

2 ch(2u) sh2 « sh2N(u + 2r]), Mi=M2 = \N + 2, 
p=l. 

(5.9) 

We have verified numerically the completeness of this solution. Similar re
sults hold for the case with a_,/3_ arbitrary and a+ = j3+ = 0, etc. 

We observe that this solution represents a generalization of the famous 
Baxter T — Q relation 4, which schematically has the form 

t(u) Q(u) = Q(u') + Q{u"). (5.10) 

Indeed, our result (5.6) has the structure 

t («)Qi(u) = Q2(«') + Q2(ii"). 
t{u) Q2(u) = Qi(u') + Qi(u") . (5.11) 

Such generalized T—Q relations, involving two or more independent Q(u)'s, 
may also appear in other integrable models. 

6. Conclusions 

We have seen that Bethe Ansatz solutions of the open spin- | XXZ quantum 
spin chain are available for the cases (i)-(iii), for which the quantity A(w) 
(1.5) is a perfect square. There may be further special cases for which A(u) 
is a perfect square, in which case it should not be difficult to find the 
corresponding Bethe Ansatz solution. Our solution for case (iii) involves 
more than one Q{u). This is a novel structure, which should be further 
understood. The general case that A(u) is not a perfect square and/or that 
rj ̂  in/(p + 1) also remains to be understood. 
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A Yang-Mills gauge field with gauge group SU(2) can be decomposed into a 
single charge neutral complex vector and two spinless charged scalar fields. 
Under normal circumstances these constituents are tightly confined into each 
other by a compact f/(l) interaction, and the Yang-Mills Lagrangian describes 
the dynamics of asymptotically free pointlike gauge particles. But in a low 
energy finite density environment the interaction between the constituents can 
become weak, and a spin-charge separation may occur. It could be that this 
separation between the spin and charge, in combination with a condensation of 
the charge carriers, occurs when the Yang-Mills theory enters its confinement 
phase. 

1. Introduction 

Color confinement by strong nuclear forces and superconductivity in high 
temperature cuprate superconductors are both among the outstanding 
physical quagmires. Curiously, it seems that these two apparently very dis
tinct phenomena have much in common. In both cases there is a well-defined 
theoretical framework that is at least in principle capable of explaining all 
of their physical properties. In the case of strong nuclear forces we have 
the Yang-Mills theory, while the description of high-Tc superconductivity 
employs the t — J (Hubbart) model. In both cases the fundamental theo
retical problem is also very similar: The lack of a natural condensate. In 
the case of the Yang-Mills theory, we desire a gauge invariant operator 

mailto:Antti.Niemi@teorfys.uu.se
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that can describe the mass gap. In the t — J model there is no apparent 
Cooper pair, that could yield an explanation of superconductivity by the 
BCS-mechanism. 

In the case of the t — J model, it has been proposed that a Cooper 
pair condensate can be constructed in a manner which, if correct, has far 
reaching consequences to our understanding of the fundamental structure of 
Matter. This proposal states 1 _ 3 that in the strongly correlated environment 
of cuprate superconductors, an electron ceases to be a fundamental particle. 
Instead it is postulated that an electron is a bound state of two other 
particles, which are called spinon and holon. The spinon is a fermion that 
carries the spin degree of freedom of the electron. It does not directly couple 
to Maxwell's electrodynamics. The holon is a spinless, complex boson and 
it carries the electric charge of the electron. 

To introduce the decomposition of the electron into its spinon and holon 
constituents, we consider a charge neutral, spin-1/2 fermionic operator /jCT 

where i is the site label and a =T, I is the spin index. This operator cor
responds to the spinon, it it the carrier of the (statistical) spin degree of 
freedom of the electron. 

The holon is described by a spinless bosonic operator bj = (&a, 6*2) and 
it carries the electric charge of the electron. 

In terms of the spinon and holon, the electron operator da decomposes 
according to 

Cia = -T=b\%l)ia , (1.1) 

where we have combined the spinon operators as 

C = C/w™4) . (1.2) 
But the decomposition (1.1) also introduces an internal U{\) gauge sym
metry, as it remains invariant under the simultaneous phase rotations 

h - » e i e b h Vw -» ei0ipic7. (1.3) 

As a result there is a compact U(l) gauge interaction between the spinon 
and holon. 

Under normal circumstances one expects that the strength of the in
ternal U(l) interaction increases with increasing energy. As a consequence 
at high energies the spinon and holon are confined into a (point-like) elec
tron, consistent with experimental observations at high energies. But in a 
strongly correlated environment, such as in a cuprate superconductor, the 
spin and the charge of the electron can become independent excitations 
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1 - 3 . This leads to a very complicated phase diagram, with several different 
regions 3. This phase structure is usually inspected using a mean-field the
ory, which is obtained by integrating over the fermions ipi,,. In this way one 
finds that (d-wave) superconductivity occurs when the remaining bosonic 
holon field bi condenses, 

(blh) = A 6 # 0. (1.4) 

Of substantial interest is also the possibility that the system can enter a 
pseudogap phase3, which is a precursor to the superconducting phase; It 
has the characteristic property that even though the underlying symmetry 
is broken the effective bosonic order parameter A;, vanishes due to quantum 
fluctuations. 

2. Spin-Charge Separation 

We now proceed to describe the spin-charge decomposition of the SU(2) 
gauge field4'5. For this we represent the gauge field as a linear combination 

An = A^a* = < V 3 + Xp+<7+ + XM_<7- (2.1) 

where 

Xfi± = A,ti =F iA^ 

The spin-charge decomposition of A^ entails a decomposition of XM± into 
its spin and charge constituents. Therefore, we introduce a complex vector 
field eM which we normalize according to 

e1 = 0 
e e - = l <2'2> 

With ipi and tp2 two complex scalars we can then write X^± as 4 

X„+ = X;_ = ifaen - i ^ l (2.3) 

Indeed, any four component complex vector can always be represented as 
a linear combination of the form (2.3). For this, it suffices to observe that 
an arbitrary, unconstrained four component complex vector describes eight 
independent real field degrees of freedom. On the other hand, the two com
plex fields ipi and i/>2 describe four, and the complex vector e when subject 
to the conditions (2.2) describes five independent field degrees of freedom. 
But one of these corresponds to the internal U(l) rotation 

-• — if -> 

e — > e H e 

-01 —> e^Vi (2.4) 
ip2 —> e'*V2 
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which leaves the r.h.s. of (2.3) intact. As a consequence, in the general case 
the r.h.s. of (2.3) also describes eight independent field degrees of freedom. 

In general, the present decomposition of the gauge field is not gauge 
invariant. But it turns out that in a proper gauge the decomposition can 
be given a gauge invariant meaning. In particular the combination 

P 2 = P ? + p i = (l^i|3> + <|^|2> (2-5) 

of the holons of the gauge field becomes a gauge invariant quantity. For this 
we introduce 5 '6 

/ > = J (Pi + PD = J KK)2 + {Alf} = fx,x;. (2.6) 

This is in general a gauge dependent quantity. But if we consider the 
extrema of (2.6) along the gauge orbits with respect to the full SU(2) 
gauge transformations, these extrema are by construction gauge indepen
dent quantities. Moreover, the gauge orbit extrema of (2.6) correspond to 
field configurations X^ which are subject to a background version of the 
maximal abelian gauge 5 ,e, 

(dli+igCli)Xll=0, (2.7) 

This gauge condition is widely used in lattice studies 7. In the following 
we shall assume that the gauge fixing condition (2.7) has been introduced. 
The spin-charge decomposition of the gauge field then acquires a gauge 
invariant meaning. In particular, the condensate (2.5) is a gauge invariant 
quantity. 

The internal U(\) invariance determines a compact version of the U(l) 
gauge structure. A compact (7(1) gauge theory is known to be confining 
when the coupling is sufficiently strong 8 . The confining phase is separated 
by a first order phase transition from the deconfined weak coupling phase. 
Furthermore, since the running of the /^-function of the compact £7(1) leads 
to an increase of the coupling with increasing energy, we expect that at 
high energy the spin and charge of the gauge field become confined by 
an increasingly strong compact U(l) interaction to the effect that the high 
energy Yang-Mills theory describes asymptotically free and pointlike gluons, 
as it should. 

But at low energy and in a strongly correlated environment, maybe in 
the interior of hadronic particles, the internal U(l) gauge interaction can 
become weak and the spin and the color-charge degrees of freedom of the 
gluon can separate from each other. If in analogy with (1.4) the spinless 
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color-carriers then condense 

P2 = p \ + p \ = (V-lV-i) + <V4V>2> = A ^ 0 , 

we have a mass gap and the theory is in a phase which is very similar to 
the holon condensation phase of cuprate superconductors. 

We observe, that when we use the condition (2.7) and solve for pi and 
P2, we introduce no restrictions on the complex vector e. Nor do we in
troduce any restrictions on the phases of the complex fields Vi and tp2. 
In particular, this means that the internal symmetry (2.4) remains intact 
when we evaluate the absolute values p\ and pi at their gauge invariant 
extrema along the gauge orbit. 

We note that in general there are Gribov ambiguities in the maximal 
abelian gauge condition. Consequently the extrema values of p\ and pi on 
the orbit are not unique. In this article we will not analyze the consequences 
that Gribov ambiguities might have. 

The diagonal U(l) C SU(2) gauge transformation of the original gauge 
group acts on the complex fields ipi^ as follows, 

Here the phases differ from those in (2.4) by a relative sign. Since this U(l) 
transformation leaves the vector e intact, only the complex fields Vi and 
ip2 couple to the Cartan subgroup U(l) C SU(2). On the other hand, the 
components eM transform as a vector under Lorenz transformations while 
the fields f/>i ad 1̂2 are scalars. This means that (2.3) entails a decomposition 
of X^± into two qualitatively very different sets of fields: The scalar fields 
ipi and ip2 couple nontrivially to the abelian component of the SU(2) gauge 
transformations i. e. carry a charge but have no spin. The complex vector e 
is neutral w.r.t. the abelian component of the gauge transformation but it 
carries the spin degrees of freedom of the XM±. 

Onviously, for consistency of the decomposition (2.3) we must assume 
that both condensates p\t2 are nontrivial. This means, that in the quantum 
Yang-Mills theory we need the expectation values 

< pi,2 > = Ai,2 (2.9) 

to be nonvanishing. This condition then specifies the physical environment 
where the separation between the spin and the charge of a gauge field can 
occur. 

Numerical simulations 9 indicate, that in the confinement region of 
SU(2) gauge theory both Ax and A2 are non-vanishing. It would be very 
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interesting, if this indeed implies that the Ai,2 can be viewed as the order 
parameters that characterize when the Yang-Mills theory displays confine
ment. 

It is apparent that the present spin-charge decomposition of the gauge 
field is fully analogous to the spin-charge decomposition of the electron: In 
both cases, the decomposition entails a separation between the carriers of 
spin, and the carriers of charge. Furthermore, in both cases the separation 
can only occur in a finite density environment. In the case of electron we 
need the fi in (1.4) to be non-vanishing and in the case of gauge field we need 
the condensates (2.9) to be non-vanishing. Furthermore, in both cases the 
decomposition introduces an internal, compact U(l) that can be employed 
to argue that asymptotically in the short distance limit both the gauge 
field and the electron must behave like structureless point particles, with 
the spinon and holon confined to each other by the strong internal force. The 
internal spin-charge structures can be visible only in the infrared region and 
in a finite density environment, when the internal U(l) interaction becomes 
weak. 

3. Conclusion 

In conclusion, the spin-charge decomposition that has been widely employed 
in the theory of cuprate superconductors, can also be introduced in Yang-
Mills theories. The decomposition of a gauge field turns out to be very 
similar to that of an electron in the context of high-Tc supercoductivity. 
Furthermore, if both fermions and gauge fields are dcomposed in a theory 
such as QCD or more generally the Standard Model, this could lead to a 
very rich gauge structure. Since the conditions for a decomposition to oc
cur are quite similar to those expected in a confining environment, it is of 
interest to understand whether confinnement allows for a natural interpre
tation in terms of the decomposed structures. Indeed, the widely accepted 
intuitive picture of confinement as a dual Meissner effect relies heavily on 
the BCS approach to superconductivity. But the BCS theory is based on 
the existence of a natural condensate, the Cooper pair, which is absent in 
Yang-Mills theories. The failure of BCS theory due to the absence of a nat
ural Cooper pair in theories of cuprate superconductors originally led to the 
introduction of a spin-charge decomposition in that context. Maybe a sim
ilar remedy turns out to be applicable also in the case of strong interaction 
physics? 
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The one-dimensional Holstein model of spinless or hard-core fermions inter
acting with dispersibnless phonons is proved to be exactly solvable. Excitation 
energies and the corresponding wavefunctions of the model are obtained by 
using a simple extended Bethe ansatz. 

Models of interacting electrons with phonons have been attracting 
much attention as they are helpful in understanding superconductivity 
in many aspects, such as in fullerenes, bismuth oxides, and the high-Tc 

superconductors.'1! Unlike conventional metals these materials are not nec
essarily in the weak-coupling regime where perturbation theory can be used 
or the strong-coupling regime in which a polaronic treatment is possible. 
Neither are they necessarily in the adiabatic regime in which characteris
tic phonon energies are much less than characteristic electronic energies. 
This challenge has led to numerical studies of the Holstein (or molecular 
crystal) model of electrons interacting with dispersionless phonons in infi
nite dimensions, two dimensions, one dimension and on just two sites.I1'2! 
The one-dimensional case is important because of the wide range of quasi-
one-dimensional materials which undergo a Peierls or charge-density-wave 
(CDW) instability due to the electron-phonon interaction. Most theoretical 
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treatments assume the adiabatic limit and treat the phonons in a mean-field 
approximation. However, it has been argued that in many CDW materials 
the quantum lattice fluctuations are important [3]. 

In this talk, we present a study of the one-dimensional Holstein model 
of spinless or hard-core fermions with an algebraic approach. This model is 
particularly interesting because at a finite fermion-phonon coupling there 
is a quantum phase transition from a Luttinger liquid (metallic) phase to 
an insulating phase with CDW long-range order [4,5]. This illustrates how 
quantum fluctuations can destroy the Peierls state. 

The Hamiltonian is 

H = uJ2 b\h - t £ ///_,- + g £ flfi(b\ + h), (1) 

where /j destroys a fermion on site i, 6» destroys a local phonon of frequency 
u>, t is the hopping integral, g is the fermion-phonon coupling and a periodic 
chain of N sites is assumed. The phase transition occurs at a critical coupling 
gc separating metallic (0 < g < gc) and CDW insulating phases (g > 
gc) [4,5]. In the strong coupling limit (g2 3> wt) (1) can be mapped onto 
the anisotropic, antiferromagnetic Heisenberg (XXZ) model [4] which is 
exactly solvable. The transition occurs at the spin isotropy point, is of the 
Kosterlitz-Thouless (K-T) type, and the Luttinger liquid parameters can 
be found in the metallic phase [2]. 

In order to diagonalized the Hamiltonian (1), let use consider the simpler 
hard-core Fermi-Hubbard model!6! wjth 

H = J2 hifii - t J2(f!fi+i + fl+Ji) - t(flfP + /p
f/i)(l - M , (2) 

i= l i= l 

where {hi} are a set of parameters independent of the number of fermions, 
and the last term keeps (2) satisfying the periodic condition. It has been 
known that (2) is simply exactly solvable.I6' For fc-particle excitation, the 
eignstates are 

M>= £ C^l..ikflfj2--.fl\0), (3) 
H<«2<"'<ifc 

where 
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c: (V) 

g{m) g{rn) •••g{m) 

Am) Am) _ _ Am) 
* * f c 

Am) Am) . . . Am) 
" » 1 ^ 1 2 "«fc 

(4) 

, ( ^ ) i in which {g\ } should satisfy the following eigen-equation for a p x p 
matrix T with 

^ T y ^ ' ^ ^ ' (5) 

where {Tij(p)} are elements of the matrix 

r < 2 > = i - i ^ > ' T W 

/hi -t 0 ••• - t \ 
-t h2 -t 0 

o • • . ' • • ' • . ' • . 

; . . . —t hp—i —t 
\-t 0 ••• -t hp/ 

for p > 3, (6) 

which is tridiagonal except the elements T%p = Tp\ = — t for p > 3 orig
inating from the last term in (2) needed in order to satisfy the periodic 
condition. 

Let us introduce the differential realization for the boson operators with 

b\ => Vi, h ^ — (7) 

for i = 1,2, • • • ,p. Then, the Hamiltonian (1) is mapped into the following 
form: 

dyi 

According to the digonalization procedure used to solve the eigenvalue 
problem (2), the one fermion excitation states can be assumed to be the 
following ansatz form: 
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P 

\nf = 1) = ^2QII(XI,X2,--- ,xp) e-iy»fl\0), 
M = l 

(9) 

where 10) is the fermion vacuum state and 

Zi = 2/1 - 2/2, • • • , Xk-i = 2/fc-i - Vk, xk =Vk- 2/fc+i, • • • , 

Xp-i = 2/p-i - yP, xp=yp- yi. (10) 

By using the expressions of (8) and (9), the energy eigen-equation becomes 

-tT,fltiT,i»°~i""t» - (£+£)£>«"**•/». (n) 
<t,j> /* M 

which results in the following set of the extended Bethe ansatz equations: 

i e _ " I " - 1 - T 1 V?^ie« ! e ' * = ( ^+^ - )9M 
1 + 02p OJ 

(12) 
for /i = 1,2,- • • ,p, which is a set of coupled rank-1 Partial Differential 
Equations (PDEs). Eq. (12) completely determines the eigenenergies and 
the corresponding coefficients {q^ = qli(xi,X2,--m ,xp)}. Once the above 
PDEs are solved for one-fermion excitation, according to the procedure used 
for solving the hard-core Fermi-Hubbard model, the fc-fermion excitation 
wavefunction can be organized into the following form: 

\nf = fc;C) E C1
(
1t . . i f ce-*SU^/t/t i . . . /tk |o) (13) 

with 

a (v) 

im) Am) 

Am) Am) 

Q(Vk) (Vk) 

• q?2) 

Am) 
iik 

(14) 
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The corresponding fc-fermion excitation energy is given by 

EM=jr,EM-kg2/u, (15) 
t /= i 

in which E^1"^ is the v-t\i eigenvalue of Eq. (12). 
In summary, general solutions of the 1-dim Holstein model are derived 

based on an algebraic approach similar to that used in solving 1-dim hard
core Fermi-Hubbard model. A set of the extended Bethe ansatz equations 
are coupled rank-1 Partial Differential Equations (PDEs), which completely 
determine the eigenenergies and the corresponding wavefunctions of the 
model. Though we still do not know whether the PDEs are exactly solvable 
or not, at least, these PDEs should be quasi-exactly solvable. 
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After briefly reviewing selected Ising and chiral Potts model results, we dis
cuss a number of properties of cyclic hypergeometric functions which appear 
naturally in the description of the integrable chiral Potts model and its three-
dimensional generalizations. 

1. Ising Model and Integrable Chiral Potts Model 

1.1. Z-Invariant Ising Model 

Baxter's Z-invariant Ising model is the prototype integrable lattice model 
in statistical mechanics. It is "exactly solvable" for two reasons, namely 
because of a complete parametrization in terms of Yang-Baxter rapidities 
but also because of reformulations in terms of free fermions. This does 
not mean that the calculation of its pair-correlation or its susceptibility is 
a straightforward exercise. A more detailed description of the singularity 
structure of the zero-field susceptibility of the square-lattice Ising model 
has been obtained only recently.1 

Both integrability features were exploited in our recent studies of the 
pair-correlation function and the wavevector-dependent susceptibility of 
Ising models with quasiperiodic coupling constants2'3 and of the pentagrid 
Ising model4 of Korepin. 

1.2. Integrable Chiral Potts Model 

An Af-state generalization of the Ising model with fermions replaced by 
cyclic parafermions is given by the integrable chiral Potts model.5~~7 One 
version of this model is given in terms of a square lattice of horizontal and 
vertical rapidity lines with rapidities q and p, respectively pointing left and 

mailto:perk@okstate.edu
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up. After black-and-white checkerboard coloring of the faces, Potts spins 
are placed on the black faces. Boltzmann weights W(a — 6) and W(a — b) 
are assigned to each nearest-neighbor pair of spins in states wa and u>b, 

a2ni/N 
u) = e (1.1) 

(a, b = 1 , . . . , N), as in Fig. 1.1. Here the difference a — b is to be taken 

Wm(a-b) Wpq/ia-b) 

Fig. 1.1. Chiral Potts Model Boltzmann Weights. 

mod N. The Boltzmann weights W and W can be parametrized as 

Wpq(n) _(Hp\nyr yq-xPuj Wpq(n) _ n A wXp-XqfJ 

(1.2) 
The rapidities p and q lie on a higher genus curve with moduli k, k', with 
r + k" = 1. The p-curve is parametrized by (xp,yp, /xp) satisfying the 
algebraic equations 

^ = ( l - k ' A p ) / k , „N ( l - k 7 A p ) / k , MP
V = AP, 

Ap + A"1 = ( 1 + k" - r i / ) / k ' , tp = xpyp, 

(1.3) 

(1.4) 

which follow from the two modiV conditions WPq(N) = H^,q(0) and 
Wpq(N) = Wpq(0). Given a value of tp one can choose |AP| > 1 or |AP| < 1. 
Then xp, yp, fip are given by (1.3) up to powers of w. 

1.3. Chiral Potts Free Energy and Order Parameters 

Baxter has derived several exact results for the free energy of the chiral 
Potts model. Most of his work is based on a set of functional equations 
for the transfer matrices.8 An account with results for all four regimes, 
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with each of |AP| and |Aq| > 1 or < 1, can be found in Ref. 9. Baxter also 
obtained results for the interfacial tension, which can be much simplified in 
the symmetric case.10 

For the order parameters of the integrable chiral Potts model we have 

, ,2 /n n(N - n) 
(°o) = ( ! - * ' Pn 

27V2 (1 < n < JV-1, ag = 1), (1.5) 

which was conjectured11 early in 1988 and proved only very recently by 
Baxter.12 '13 

2. Cyclic Hypergeometric Functions 

2.1. Basic Hypergeometric Series at Root of Unity 

The basic hypergeometric hypergeometric series is defined as 

P + I ^ P 

where 

a i , - -

Pi, • ,PP 
;z = £ (ai;q)r--(aP+i;q)i 

r ^ (Pi;q)r--{PP;q)i{q;q)i 

Setting first ap+\ = q 

P + I ^ P 

(x^JjsJJCl-x^-1), l>0. 
j = i 

1 _ w and then q —> u = e27rl/,JV, we get 
J V - 1 

w , a i , ' 

ft," 
' P 

,/?P (=0 (PI;LJ)I---(PP;U)I 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

We note 

(x;u>)i+N = (1 -xN)(x;u>)i and (w;u)i — 0, l > N. 

Requiring 
P 1 _ RN 

j = i J 

we obtain from (2.3) the "cyclic hypergeometric function" with summand 
periodic mod TV. Of special importance is the Saalschutz case, defined by 

z = q= — or (j2aia2---ap= P1P2-• PP, z=w. (2.6) 
ai---ap+i 

The theory of cyclic hypergeometric series is intimately related with the 
theory of the integrable chiral Potts model and its generalizations in three 
dimensions. We note that our notations differ from those of Bazhanov and 
Baxter14 '15 and of others,16-19 who have an upside-down version of the 
g-Pochhammer symbol (x;q)[. 
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2.2. Integrable Chiral Potts Model Weights 

The weights W and W of the integrable chiral Potts model can be written 
in product form10 

W(n) _ y x (a^)n .,N 
N 

7 
1- /? 

,7V ' 1 — a W(0) ' (/3;W)„' 

This is periodic with period N. 
The dual weights are given by Fourier transform, i.e.20 

J V - l 

W(k)= ^ w n f e W ( n ) = 2 $ i 
n=0 P ;7w W(0). 

They have the same structure as the original weights7'20 

— 7 — , with a = 7, /? = 
W(0) (/3;w)„ P ' 7 / ? ' 

(2.7) 

(2.8) 

(2.9) 

2.3. Summation Formula for 2*1 

The 2$ i is exactly summable as a product.20 More precisely, we introduce 
the functions 

N-l 

A(z) = (1 - / ) ' / w , p(z) = H (1 - c^yp^, (2.10) 

Po(z) p(*) 
A(z) (N-l)/2 

JV-l 

n (1 - wjz) 
A(z) 

3/N 

(2.11) 

with all have cuts for zN > 1 real, with the exception that p(z) is regular 
on the positive real z-axis, where p(l) = V~N$o, $o = o / ^ - 1 ^ - 2 ) / 2 4 . 

With these definitions, 

2 * 1 

where 

LO.Q. 

P 
. -, _ p -£fc(fc+l)-mfc _ 

N p{f3)p{i)p{e) 

' 7 **" -yi^-V P(<*)P(1)P(6)' 

N 
m : 

2TT' 2TT 

with J_a;J the floor of x and 

arg/3 

/? 
A(a) a 0:7 

(2.12) 

(2.13) 

(2.14) 
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© 

.«-.... 
o'--. 

© 0.- • • . 1 

fUut 

Fig. 2.1. Cut structure in /3N-pla,ne for ImotN > 0, respectively Ima^ < 0. 

The phase factor F* can take several values. If we keep a fixed and move 
/? in the complex plane, we encounter the cuts in Fig. 2.1. From a detailed 
analysis at each cut we find 

Fi = l, Fn = wfc, F„ i = oJm-n+k, if I m / > 0, 

Fi = 1, FIV =u> k, Fur = W n—m—k , if I m a " < 0 . (2.15) 

Noting 

we see that 

( Z ; U ) n E [ | ( l - ^ ) , z = 0 , . . . , JV- l . 

p(wnz) p0(w"z) (z;w)„ ,, „ 

(2.16) 

(2.17) 
p(z) po(z) A(z)n 

which is a "cyclic Pochhammer symbol" ((z;ui))n+N = ((z;u)))n. On the 
principal sector 0 < argz < 2n/N, we find 

_1)/4 A(u/z) = c^+i_ 
A(z) z Po (Z)PO(UJ/Z) = JN2-^n = $0

2JN- (2.18) 

2.4. Z 4 Symmetry o / 2 $ i 

The Fourier transform (2.9) defines a transformation fi, 

- JL 
{3 aj 

fx: 

a 7 

WQ7 W W 
/ ? - > — • • > p \ 

p a 7 

(2.19) 

From (2.8) we may infer 

W(Q) 

W(0) 
2 $ 1 

P 
(2.20) 
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Using this and applying Fourier transform n four times, we find 

2 * 1 
uj.a 

0 ' 
N 

2 * 1 
w , 7 

N 

;<o//3 

= 2 * 1 
u>,w/0 

w/a 
; /3/«7 

2 * 1 
u,0/a-y_ 

:a 

2 * 1 

which is a Z4 symmetry. 

(2.21) 

2.5. T/ie 3*2 identities 

Using the convolution theorem, we find 

u,ai,a>2 
3 * 2 a a i7l72 

Pl,P2 
N-\ 

i V - ^ 2 * ! 
fe=0 

W,0!1 -fc 
2 * 1 

W,0!2 fc 

Pi 
, (2.22) 

where 7» = A(/?,)/A(ai), i = 1,2. We can use the recurrence relation7'20 

W(n) 

W{0) 

2 * 1 
/? 

;TW 

2 * 1 
0 

( q ; ^ ) n 

( P » « ' 
(2.23) 

to find 

3 * 2 
u>,ai,a2 

Pufo'' 
7i72 = A 3*2 

w, /?i/ai7i , 72 

. W / 7 1 , WQI272//32 
; wai/32 

with 

A = AT"1 2*1 
uj,ai 

;7i 2 * 1 
u,a2 172 

(2.24) 

(2.25) 

More generally, one can generate the symmetry relations of the cube in the 
Baxter-Bazhanov model under the 48 elements of the symmetry group of 
the cube, see also the work of Sergeev et al.18 

The group is generated by two generators. The first one is ia: a\ <-» a2 

resulting in 

3 * 2 
u>,ai,a>2 

;7i72 = 3 * 3 ^ 2 
w , a 2 , a i 

01,0: 
;7374 (2.26) 
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with 73 = A(/?i)/A(a2) and 74 = A(/?2)/A(ai), so that 7374 = 7172- The 
second generator is M = /u_1 <g> fi, which results in 

3 $ 2 
w,a 1 ,a2 

;7i72 

N 3 $ . 3 ^ 2 
tj,a>2,ai 

Pi, fo 
;7i72 

2 $ 1 
w,ai _ 

ft571 2 $ 1 
w,a2 _ 

fl ; 7 2 

P2 
with 

a i 

a 2 

A 
a i 7 i 

; 72, h 

A 
7i 

WO!272 

71 = a l . 

72 
U) 

(2.27) 

(2.28) 

This is the inverse of (2.24). We can use (2.12) to evaluate the 2^1's, but 
this will lead to a phase factor depending on the positions of the ct's and /3's 
with respect to the cuts defined by Fig 2.1. Eqs. (2.24), (2.26) and (2.28) 
are valid in general, independent of choices of Riemann sheets or branch 
cuts. 

2.6. Connection with Sergeev, Mangazeev and Stroganov 

In several of the Russian works16-19 one uses points, p, p', etc., from the 
Fermat curve T in homogeneous notation, i.e., 

pGT <-> p=(x,y,z) with xN+yN = zN. (2.29) 

In our affine notation, p <-> a, p' <-> /3, etc., we would identify 

(2.30) a=—, A(a) = *- = (1 - aN)1/N. 
UJX 

z 
y 

z 

The assignment of Riemann sheets and branch cuts is more subtle in their 
homogeneous notation. They deal with that by breaking up the curve T in 
parts r j " , 

P G rJ;, 
um+1x 

A(a) = 
w ly 

IT , 2ir y 7r , 27r x 2n . „ . 
- N + l ^ < a ^ z < + N + l ^ ° < " * ! < * • ( 2-31) 

and by using the notation (p, m) for points in T™. How their notations 
translate into ours is also indicated in (2.31). 
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The w-Pochhammer symbol (X;LJ)I is defined upside-down and is not 
even unique in the various Russian papers. It is to be translated as 

w(x,y,z\l) = l[—L = (T) 
s=1~ __ >zJ (wx/z;u)i 

in Ref. 16. However, for the work of Sergeev et a/.18 one must identify 

1 , , . 1 

(2.32) 

w(p'\rn' + a) = 
po{u°a)' 

w(p\m + <T) = 
Po(wCT/3): (2.33) 

A(/3) = *, (2.34) 

with po(z) denned in (2.11), as they normalize JJi w(x\l) = 1, not w(p\0) — 
1. Therefore, for the appendix of Ref. 18 we have to make the translation 

^ f(pi,m1),...,(pr,mr) 
r\(p'1,m'1),...,(p'r,m'r) 

C = 1 Pojai)•••Po(ar) 

VN Po(0l)•^^Po(Pr), 

= c r + i $ r 

Z = IjJ 

§r 

A 

"w,a i , 

. / 3 i , . . 

(Pi)--
( a i ) - -

. . . , ar 

-,Pr ',Z. 

•A(/3r) 
•A(a r) ' 

, (2-35) 

(2.36) 

2.7. Other Identities for Cyclic Hypergeometric Functions 

One can derive many other identities for the cyclic hypergeometric function 
(2.3), (2.5). Without giving explicit expressions, we list some of the types 
of identities in Table 1. 

Table 1. Cyclic hypergeometric identities. 

Conditions p + i 

$P = n / n P+i$PocP+1$P None 

z = ui 

Saalschiitz 

2 $ 1 

3 $ 2 

4 $ 3 

3<E>2 

4 $ 3 

5 $ 4 

One type of identity is the evaluation of p + i $ p in terms of a ratio of 
products. This is shown in the middle column of Table 1. Another type 
of identity is the proportionality of two p + i $ p ' s where the proportionality 
factor can be expressed in terms of 2^1 's or, equivalently, products. This 
is shown in the last column of Table 1. The conditions under which such 
identities can be found are listed in the first column. 
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The two cases where there are no further conditions have been discussed 

in previous subsections. Other cases requiring the conditions z = u> and 

the more restrictive Saalschiitz condition (2.6) have also been discussed in 

Ref. 21. The s tar- t r iangle equation of the integrable chiral Po t t s model is 

a special case of the Saalschiitzian 4^3 identities.2 0 '2 1 

It must be noted tha t identities of all six types in Table 1 have been 

derived by Sergeev, Mangazeev and Stroganov in the appendix of Ref. 18. 

However, one needs the translation (2.35) to see the connections with more 

s tandard basic hypergeometric notations and with the Saalschiitz condition. 

Many other identities can be derived. For example, Watson's analogue of 

Whipple 's theorem for 8 $ 7 reduces to 7 $ 6 oc 4 ^ 3 . Moreover, new identities 

can be found in the N —> 00 limit.22 

3 . F ina l R e m a r k s 

We have presented several results on the deep connection of the integrable 

chiral Po t t s model with the theory of cyclic hypergeometric functions. 

Eq. (2.12) with F» as specified in Sec. 2.3 is new and is easier to use than a 

formulation with multiple Riemann sheets, especially when doing numerical 

computations with it. Finally, translation (2.35) is also new and may make 

the results of Sergeev et al.ls more accessible to a wider audience familiar 

with basic hypergeometric series. 
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Bethe Ansatz and Symmetry in Superintegrable Chiral Potts 
Model and Root-of-unity Six-vertex Model 

Shi-shyr Roan* 

Institute of Mathematics 
Academia Sinica, Taipei , Taiwan 
E-mail: maroan@gate.sinica.edu.tw 

We examine the Onsager algebra symmetry of r ' J ' -matr ices in the superin
tegrable chiral Potts model. The comparison of Onsager algebra symmetry of 
the chiral Potts model with the sfa-loop algebra symmetry of six-vertex model 
at roots of unity is made from the aspect of functional relations using the Q-
operator and fusion matrices. The discussion of Bethe ansatz for both models 
is conducted in a uniform manner through the evaluation parameters of their 
symmetry algebras. 

1. Introduction 

The symmetry of quantum spin chains and the related lattice models has re
cently attracted certain attention due to their close connection with diverse 
areas of physics as well as mathematics. However, up to the present stage, 
only limited knowledge is available about the symmetry of lattice vertex 
models, and few exact results are obtained in this area. Even the s^-loop 
algebra symmetry of the six-vertex model at roots of unity, found in n , has 
not been fully understood till now, given that much accomplishment has 
been made on the study of evaluation parameters related to the symmetry 
algebra representation. Some conjectures supported by numerical evidence 
remain to be answered, (see 12 14 and references therein). Though the under
standing of the symmetry of eight-vertex model in 15 16 is still rudimentary 
in the present stage, the conjectural functional-relation-analogy discovered 
in the study on the eight-vertex model and the iV-state chiral Potts model 
(CMP) in 7 did lead to exact results about the Onsager algebra symmetry 
of T^) -models in the superintegrable CPM 20 21. In the study of CPM, 

"This work is supported in part by National Science Council of Taiwan under Grant No 
NSC 94-2115-M-001-013. 
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the lack difference-property for the rapidities is considered as the charac
teristic nature which distinguishes CPM from other known solvable lattice 
models. Nevertheless, progress made on the transfer matrix of CPM for 
the past fifteen years, culminating in the recent Baxter's proof of the order 
parameter 6 , has provided the sufficient knowledge for the understanding of 
the detailed nature about the symmetry of superintegrable CPM. By this, 
the study of CPM could suggest a promising method to help the symmetry 
study about the six-vertex model at roots of unity as the limit case of eight-
vertex model from the approach of functional relations, a scheme proposed 
in 16. In this paper, we examine the similarity of the symmetry structure of 
two lattice models: the superintegrable CPM and the six-vertex model at 
roots of unity. The symmetry of superintegrable CPM is described by the 
Onsager algebra, obtained in 20 21, with a short explanation in Sec. 2. The 
six-vertex model at roots of unity possesses the s/2-loop algebra symmetry 
by the works in n 12 14. We present a discussion of symmetry of six-vertex 
model, parallel to the theory of CPM, through Bethe roots and evaluation 
parameters in Sec. 3, and give some concluding remarks in Sec. 4. 
Notation. N is an integer > 2, LI = e~^, i = y/—T, and X, Z the Weyl 
operators of CN:X\n) = \n + 1), Z\n) = wn\n) for n £ ZN = Z/NZ. 

2. The iV-state Chiral Potts Model 

2.1. Rapidity and functional Relation of chiral Potts model 

In the study of CPM as a descendent of the six-vertex model, Bazhanov 
and Stroganov obtained the following 3-parameter family of Yang-Baxter 
solutions for the inhomogeneous R-matrix of six-vertex model, 

R(t) = 

/tuj-l 0 0 0 \ 
0 t-1 ui-l 0 
0 i(w - 1) w(i - 1) 0 

V 0 0 0 tuj-l) 

with the C -operator entries parametrized by a four-vector ratio p = 
[a,b,c,d}82°: 

h*r (t\ ( b2~td2X {bc-wadX)Z\ 
b G^) = { _t{bc _ adX)Z-i _tc2 + ua2X ) , *€ C, (2.1) 

which satisfy the Yang-Baxter equation: R{t/t')GPti{t)Gp^{t') = 
GPt2(t')GPti(t)R(t/t'). Hence the same relation holds for the monodromy 
matrix of size L, <S>e=i Gp,e{t), with Gpj(t) = Gp(t) at the site L Therefore, 
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the Tp -matrix, 

L 

T W ( t ) : = t r O U I ( 0 G p , / ( w t ) ) forieC, (2.2) 

L N 

form a commuting family of (<g> C )-operators. The Z^r-operators X, Z 

of C w at the site j give rise to the Weyl operators XjZj of <g> C ^ , The 

spin-shift operator of ® C , X := n 7 = i ^j> defines the Zjv-charge Q, and 

commutes with Tp (t). The rapidities of iV-state CMP are elements in the 

genus (iV3 — 2N2 +1) curve W in the projective 3-space P 3 , defined by the 

equivalent sets of equations: 

/ kaN + k'cN =dN (aN + k'bN = kdN J kxN = 1 - Aty" , 
W : \ kbN + k'dN = cN " \ k'aN +bN=kcN "\kyN = l - k'(iA ' 

where [a,b,c,d] £ P 3 , (x,y,fi) = ( | , | , ^ ) £ C3 , k' is a parameter with 
k2 = 1 — fc'2 ̂  0 ,1. By eliminating the variable fxN in the last set of 
above equations , and using the variables t := xy,X := fiN, one arrives 
the hyperelliptic curve of genus N - 1, tN = (1~fc'A)(

fc
1rfc'A"'), as a 7V2-

unramified quotient of (2.3). The rapidities possess a large symmetry group, 
in which the following two will be needed in our later discussion, 

U : (x,y,/i) H-» ((jjx,y,fi), C : {x,y,n) t-+ (y.a; , /^1) . (2.4) 

The Boltzmann weights Wp,q,WPtq of the CPM, depending on two ra

pidities p, q £ W, are two AT-cyclic vectors, defined by \J rm = 
j - rn dpb -avc^ W ^ n i = j - jn Uapdq-dral,v' T h c p M t r a n s f e r m a t r i x 

of size L with periodic boundary condition, L + 1 = 1, is the (® C )-
operator defined by 

rCp(p;g)ai:::::£ = n w p . < > ' - °'I)WP,M - °i+\)> ^ . ^ ' e 2^.(2.5) 
( = 1 

For a fixed p € W, {Tcp(p; q)}qew form a commuting family of operators by 
the well-known star-triangle relation of Boltzmann weights Wpq,Wpq. Then 
Tcp(p;q) commutes with X and the spatial translation operator SR (which 
defines the total momentum P £ TIL). Denote Tcp(p; q) := Tcp(p; q)Sn. The 
transfer matrix Tcp(p; q) can be derived from Tp (tq) with p £ W as the aux
iliary "<2"-operator, as discussed in 2 on the TQ-relation of the eight-vertex 
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model. One arrives r^2'Tcp-relation ((4.20) in 7) using the automorphism 
U in (2.4): 

42\tq)Tcp(p; Uq) = VP(q)Tcp(p(; q) + Jpp(Uq)XTcp(p; U2q) (2.6) 

<=> 42)(tg) = ( ^ (? )T c p (p ; 9 )+^ (C/ ? )XT c p (p ; U*q))Tcp(P; Uq)~\2.7) 

where *p{q) := { ^ ^ % ^ ) L , ?,(*) := C*%££jU))L- *Y W 

and the commutativity of Tcp(p; *), [TP '(tq),Tcp(p; q')\ = 0 for p, q, q' £ W. 
The fusion operators r^(t) for 0 < j < N are determined by the following 
TCpfCp-relation for 0<j<N, ((3.46) for (l, k) = {j, 0) in 7) with T^0) := 0, 
, ( 1 ) . . / , 

Tcp{p;q)fcp{p;CWq) = rh^\tq) + ^ ^ • • • * ( Q , ) ^ - ^ ) ) 

(2.8) 

where z{t) = C"*'ff-'>>, ap{Xq) = (*$=&$)* and r = 
,, N(xp-xq)(yr>-yg)(tp* -t%) ^ L _ /T-TJ-1 ^ f o p - u ^ s , ) ^ L R , ,. 
y (xN-xN)(yN-y»)(tp-tq) > ' rtJ ~ U l m = l d / p - ^ x 9 ) ( t p - ^ t a ) ^ • ^ lZ-SJ> 
one can derive the fusion relations of r^'s ((4.27) of 7 ) for 1 < j < N: 

TU\t)T?\ut-H) = z{fJ-H)XTtX\t) + 4j+1\t), 

4N+1\t) := z(t)x4N-^M) + u(i)J, ( } 

where u(i) := ap(A)+ap(A - 1). Note that with r ^ (*) in (2.2) forp e P 3 , the 
validity of fusion relation (2.9) provides a characterization of the rapidity 
constraint (2.3) for p e W , (Thm 1 in 2 0) . Using (2.7) and (2.9), one can 
express TP in terms of Tcp(p;q), hence the T^Tcp-relations ((4.34) in 7) : 

4j\q) = Ei-iodis1
 <PP(U*Q) n t u %^\))Tj^^:^iqY 

(2.10) 
Substituting (2.10) in (2.8), the functional equation of Tcp follows ((4.40) 
of7) : 

?cP(p; q) = E ^ = o Cm.p(q)Tcp(p; q)Tcp(p; Umq)-1Tcp{p- Um+lq)-lX-m~\ 

cmiP(i) ••= (n-o1 <MCg) n ^ + 1 %(u*q)){
N%[%^;q) )L-

(2.11) 

2.2. Bethe Ansatz and Onsager algebra symmetry in 
superintegrable chiral Potts model 

For CPM in the superintegrable case, i.e., the rapidity p given by fip = 1, 
XP = Up = »75) where rj := (j^p-)™, simplification occurs for the functional 
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relations. We shall omit the label p appeared in all operators for the superin
tegrable case, simply write r ' 2 ' (t), Tcp(q), etc. As q tends to p, to the first or
der of small £, one has ((1.11) in *): Tcp(q) = l[l+e{N-l)L]+eH(k'), where 
H(k') = Ho + k'H\ is the Zjv-quantum chain in 17 18, with the expression: 

#o = - 2 E t r En=l i z ^ r . ^ = - 2 £ * = i E ^ S P * . which satisfy 
the Dolan-Grady relation 13, hence generate the Onsager algebra represen
tation where only the spin-^ subrepresentation occurs as irreducible factors 
l 3 5 10 19 Through the gauge transform by M = dia.[l, 772], the monodromy 
matrix G(t) in (2.1) becomes the solution (2.1)fora = 6 = c = d = l : 

GV-\-t(l-X)Z-' -I+UJX ) ' t ' V *• 

Hence r^2\t) = T^2\t), where r^(t) is the trace of the L-size monodromy 
matrix associated to G(cot). Write r^\t) = r^(t), the fusion relation (2.9) 
has the form: 

fO)(f)r(2)(^-if) = (i _ U3-17)2L T(i-V(t) UJLX + T 0 + 1 > ( * ) , 1 < 3 < N , 

f(^+D(t) = (1 -t)2L T^N~l\ujt)ujLX + 2(1 - P ^ -
(2.12) 

By examining commutators of Hk with the entries of the monodromy matrix 
constructed from G(t), one can show [Hk, T^ (£)] = 0 for k = 0,1. It follows 
the Onsager algebra symmetry of T^-model (Thm 1 of 2 1 ) . However, the 
understanding of the detailed nature of Onsager algebra symmetry in the 
superintegrable CPM still requires the full knowledge about eigenvalues of 
CPM transfer matrix, which was solved by the Bethe-ansatz method in 1 4 5 

as follows. For parameters v\,... ,vmp with {—Vi)N ^ 0,1 and ViVj1 ^ 1,u 
for i ̂  j , consider the rational function 

where Pa, Pb are integers satisfying 0 < r(:= Pa + Pb) < N — 1, Pj, — Pa = 
Q + L (mod N). P(£) is invariant under t H-> wt, hence depending only on 
Pf. The criterion of P(t) as a ̂ -polynomial is the following constraint for 
VjS, ((4.4) in \ (6.22) in 4) : 

1 - 1 mp - 1 
Vi+LO L _rT-rVi-UJ lVl . 

( •—-Zn) =~U1 \ \ . « = ! , • • • , rnp. (2 .14) 
Vi+LO 2 ^ Vi-WVl 

Here the non-negative integer mp satisfies the relation LPy, = mp(Q — 2P(,— 

mp) (mod N). The total momentum P is given by e i p = uj-p" Y\T=i i+^i- • 
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The above relation is indeed the Bethe equation of r'2 '-model (Thm 3 of 
2 1 ) . Then P(f) is a simple ^-polynomial of degree mE = [(jV~1)z^r~2m''] 

with negative real roots, (Thm 2 of 2 1 ) . Let si,...smE be the P^-zeros 

of P(t), and define G(A) = Y\T=i X+1±{
2
X-1)wi where Wj := ('''£")*. 

Then ^fj- = G(A)G(A_1). One has the following expression of Tcp(q)(= 

e- iPfcp(g))-eigenvalues ((1.11) in 1 and (21) in 5 ) : 
- 1 

TcP(q)=NL-^^Jv^xg)
P*(v^yq)

P»NP^G(\q), (2.15) 

which gives the energy value of H{k') ((2.23) of *) of the form: 
a + (3k' + N(l - k')J2T=i±wJ f o r a>@ e R Therefore the T<2>-
degenerate states associated to the Bethe roots UjS form an irre
ducible Onsager-algebra-representation space of dimension 2 m E , which 
we associate the following normalized CPM transfer matrix: Q(q) (= 

e-iPQ(q)) = - . i ^ ^ T " ^ 3 ^ - , related to Qcp in
 21 by 

{r}~rxq)
Pa{ri^~yq)

PhHq~ *Q{q) = Qcp(q)- Then the Q-eigenvalues and the 
functional equation (2.11) become 

Q(q) = ^ G ( A , ) , Q(Cq) = e i P ^ G ( A - 1 ) , (2.16) 

Q(Cq) = *& E ^ {1^L
ml)rQ(q)Q(Um

q)-'Q(Um+'q)-\(2.17) 

The relations, (2.6) (2.10) (2.8), now become the following ones for 0 < j < 
N: 

T& (tq)Q(Uq) = u>-p" (1 - tq)
LQ(q) + u>p> (1 - LJtq)

LQ(U2q), (2.18) 

T&(t ) - u)U-l'>p*-r T3"1 (ni=n(i-"%)L Q(Q)Q(U1«) ) (2 19) T \tq)-u 2^m=o\ ( 1 _ u m ( 8 ) L Q(t/mg)Q(C/m-+19)''' *> ly) 

rqQ(q)Q{cu>q) = ^ n ^ V ^ - f f + ^ ( n ^ ( i - ^ • <2-20) 
By (2.16), the relation (2.18) yield ((6.18) in 4) : 

T™(tg)F(Jtq) = w- p "( l -tq)
LF(tq) +LJP»(1 -utq)

LF(u;2tq). (2.21) 

Using (2.19) and (2.20), follows the T^-polynomial (Thm 3 of 2 1 ) : 

rO)(f) = .U~^ nU(l - ***)* ElTio ( ^ ( ^ ^ « ) » 
?-F(f)FKT)P(f) = j g ^ f ^ ^ ( F ) + -gLli^f(--)(^T). 

(2.22) 
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3. Six-vertex Model at Roots of Unity 

3.1. Bethe equation of the six-vertex model 

The transfer matrix of the six-vertex model of an even size L is the 
operator constructed from the Yang-Baxter solution, 

C2)-

( q - q ~ > -
2 2 q " 

- 1 -a" 

z 2 q 2 

Z 2 

q -

02 
- 1 

0 

q - q 
- i 

Z 2 — 

0 

Z 2 

a ,<J± : Pauli matrix, 

0 

0 

0 
- i j 

z 2 q — z'- V 
as the trace of monodromy matrix: T(z) = t r o u x ( ® f = 1 L((z)) for z € C. 
The logarithmic .^-derivative of T(z) at z = q _ 1 gives rise to the XXZ 
chain with the periodic boundary condition: Hxxz = — | Y^e=i(crea}+i + 
c2crf+1 + Acr|cr|+1) with A = | (q + q _ 1 ) , a well-studied Hamiltonian initi
ated by Bethe 9. The ground state energy for the value Sz(= ^ J2eaf) 1S 

determined by an appropriate solution of the following Bethe equation for 

v := —z 

^ + q 
Vi + q 

= - q 
m _n 

-L+2m TT Vi - q Vl 
•LA ?). — i 
; = i 

Wi q2u; m 2 
(3.1) 

The Bethe-equation technique was further extended to the method of Bax
ter's TQ-relation in eight-vertex model; when applying to the six-vertex 
model, there exists a non-degenerated commuting family of Q-operators 
with the following relation (see, Chapter 9 of 2 ) : 

T(z)Q(s) = q"2 l s Z l( l - qz)LQ{U~ls) + (1 - q-lz)LQ{Us). (3.2) 

Here s is a suitable multi-valued coordinate of z, and U is a s-automorphism 
inducing the transformation sending z to q2z. Note that there are many 
such Q-operators, however all give the same Bethe equation (3.1) through 
Eq.(3.2). 

3.2. Evaluation polynomial and fusion relation of 
six-vertex model at roots of unity 

For the root of unity case with q2N = 1, i.e. q2 = w, the six-vertex model 
possesses the s^-loop algebra symmetry n . The Bethe state corresponding 
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to the Bethe roots is the "highest weight" vector of an irreducible represen
tation of the s/2-loop algebra, with the evaluation parameters characterized 
by the Drinfeld polynomial12 14. By studying the creation s^-loop current 
operator in the ABCD-algebra, the Drinfeld polynomial for a Bethe root 
{vi}lL\ of (3.1) is given by Eq. (3.9) in 14. Denote t = qz, and define the 
integer r by r = % — m (mod N),0 <r < N — 1. The Drinfeld polynomial 
is indeed the i^-polynomial associated the following polynomial P(t), 

p® = T.U %$m£>^) > nt) == rCi(i + q-1"**). (3-3) 

which has a similar form as (2.13). Indeed with F(t) in (2.13) or (3.3), let 
H(t) = -Frr , 1 - Tin CPM, six-vertex model resp. The function P(t) := 

E„-_̂  J . •Ujr ' IVx is invariant under t <—> ujt. The condition on roots of 

F(t) so that P(t) is a polynomial is provided by Bethe equation (2.14), (3.1) 
resp. Define the T^2'-operator by T^2\t) = z^T(z) in the six-vertex model, 

a n d ^ " a - J - 5 ) ^ i - t ) ^ 1 ? ) i n C P M - T h e n E q s - ^ 2 ' 1 8 ) ' (3-2) a r e combined 
into one T(2)Q-relation: 

T^(t)Q(q) = uj^H^QiU^q) + H{u>-lt)LQ{Uq), UN = 1. (3.4) 

The T^ -operators are defined recursively through the following fusion re
lation for j > 1 by setting T^ = 0, T^ = H(uj-lt)L, 

T0)(f)T(2) ( wJ-if) = u-'~H(ioj~1t)LT^-1\t) + H(tJj-2t)LT(j+V(t)(3.5) 

By (3.4), the induction-argument yields the T^Q-relation for j > 0: 

T {t)-^o
W H{W t] Q(U*-iq)Q(U*q) • ( 3-6 ) 

By this, one obtains the boundary condition of the fusion relation: 

T(JV+1)(F) = u-rT(N-V(ujt) + 2H(to-1t)L. (3.7) 

In CPM case, with the identification T^(t) = " " ^ ' ' f f i 1 " ^ ^ ? " " ' 0 , 

Eqs.(3.5)-(3.7) are the same as Eqs.(2.12), (2.19). While in six-vertex model, 
the fusion relation and T^Q-relation hold for any Q-operator satisfying 
T^Q-relation (3.4). For a polynomial F(t) with Bethe roots UjS, by (3.6) 
the corresponding T^2^-eigenvalue is determined by the relation 

T{2)(t)F(t) = oj-rH{t)LF{uj-xt) + H{w-i:t)LF{uji). (3.8) 
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Using Eq.(3.5), one obtains the form of T^-eigenvalues from Eq.(3.8): 

T»ffl = ̂ - W < ) | « ^ , ,>:, (3,) 

which implies 

?F(w- 1 t )F(w J - 1?)P(F) = T^j\t)+uj-jrT{N-j)(u>jt), 0<j<N. (3.10) 

Eqs.(3.8)-(3.10) in CPM case are the same as Eqs.(2.21),(2.22). Note that 
Eq.(3.10) is a consequence of the QQ-relation (2.20) in CPM case, which 
encodes the detailed nature of Onsager algebra symmetry in the deriva
tion of Eq.(2.16). However in the case of roots-of-unity six-vertex model, 
the QQ-relation has yet been found, even though the s^-loop algebra 
symmetry together with evaluation parameters has- already been known 
n 12 14 Ba s e ci o n the understanding in the CPM case, we now describe 
a similar, but speculated, structure about the QQ-relation in six-vertex 
case as follows. Consider the curve W : w2 = V*, and its symmetries, 
U(w,t) = (w,uit),C(w,t) = (—w,t). For odd N, the curve is parametrized 
by s = i5 , and the automorphism <p(s)(:= qs) gives rise to the above 
symmetries by U = y _ 2 W , C = <pN. The polynomial P(t) in (3.3) are 
expected, (true for r = 0 by 1 2) , to have the simple P^-roots {sk}kLi with 

P(0) ^ 0. Define G(w) = n J i i ( V * J ~ w)> t h e n ^ g j ^ = T$j- In the 
eigen-space of T(z) corresponding to F(t) determined by a Bethe root, The 
Q-operator has the Q-eigenvalues:Q(g) = F(t)^$, Q(Cq) = F(t)^k$-
for q = (w,t). The above conditions reveal the s^-loop symmetry of six-
vertex model, as the role of Eq.(2.16) for the Onsager algebra symmetry 
in CPM. Hence such a Q-matrix, if exits, must possess certain constraints 
in order to incorporate the symmetry of six-vertex model as discussed in 2 

Sees. 9.1-9.5. 

4. Discussion 

In this paper, we have examined the symmetry structure of the superin-
tegrable CPM and the six-vertex model at roots of unity by the method 
of functional relations. For the superintegrable CPM, exact results about 
the Onsager algebra symmetry of the T^ -models are obtained using the 
explicit form of eigenvalues of the CPM-transfer matrix. Based on com
mon features related to evaluation parameters of the symmetry algebra 
representation, we discussed the Bethe ansatz of both theories in a unified 
manner. By this, in the six-vertex model at roots of unity, we obtained 
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the fusion relation of T ^ - m a t r i c e s , T ^ Q - r e l a t i o n from the TQ-relat ion, 

and further indicate the special nature of Q-operator in accord with the 

required s^- loop algebra symmetry of the six-vertex model. 
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The Cyclic Renormalization Group 
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email: german. sierraOuam. es 

We present a brief introduction to the cyclic Renormalization Group concept 
and we illustrate it with quantum mechanical and many body examples. 

1. Brief History 

(1) In 1971 Wilson suggested the possible existence of limit cycles and 
chaotic behaviour in RG flows involving two or more coupling constants 
l 

(2) In 1998 Bedaque, Hammer and van Kolck studied a Hamiltonian in 
Nuclear Physics with two and three body delta function potentials ex
hibiting limit cycle behaviour 2. 

(3) In 2001 Bernard and LeClair found cyclic Kosterlitz-Thouless flows in 
the anisotropic WZW model 3 . 

(4) In 2002 Glazek and Wilson defined a discrete QM Hamiltonian with 
two couplings whose RG has limit cycles and chaotic behaviour 4 . 

(5) In 2002 LeClair, Roman, Sierra proposed a BCS model of superconduc
tivity with RG cycles (Russian Doll model) 5. This model was shown to 
be integrable by Dunning and Links 6 and the exact solution employed 
to study the elementary excitations in ref. 7. 

(6) In 2003-4 LeClair, Roman, Sierra proposed a sine-Gordon model with 
RG cycles (S matrix) and computed the finite size effects 8 '9. 

2. Limit cycles and the Russian Doll property 

Let H{g\, gi, A) be a Hamiltonian with coupling constants g\, gi and cutoff 
A. Integrating the high energy modes yields the renormalized Hamiltonian 

*Work supported by the CICYT of Spain under contract BFM2003-05316-C02-01, the 
EC Grant HPRN-CT-2002-00325 and the ESF Science Programme INSTANS 2005-2010. 
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H(gi,g2,A) -> H(gi(s),g2(s),e SA) (2.1) 

where s is the RG scaling factor. The usual situations correspond to fixed 
points (attractive, repulsive or unstable): 

Fig. 2.1. Three different types of RG flows with a fixed point in the spectrum 

However there is also the possibility of RG flows with limit cycles or centers: 

Fig. 2.2. RG flows with a limit cycle (left) or centers (right) 

For RG cycles, the relevant quantities are not critical exponents but the 
periods: 

9a{s) =ga(s + \), a-1,2 (2.2) 

where A depends on gi,g2. What is the physical consequence of this fact? 
The RG preserves the low energy spectrum of the Hamiltonian. Hence after 
a complete RG cycle the spectrum is self-similar, e.g. 

En(gug2,e-XA) = En+i(gi,g2,A) (2.3) 

Suppose that H(gi,g2,A) contains low energy states with energies 

En(g1,g2,A) = Afn(gi,g2) 

then from the selfsimilarity of the spectrum one obtains, 

(2.4) 
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e XAf„(gi,g2)=hfn+i(gi,to)-* En(gi,g2, A) ~ Ae~nA (2.5) 

If the Hamiltonian has bound states one gets 

E0 < Ex < • • • < Ex = 0 (2.6) 

This is a generic feature of the models constructed so far in Nuclear Physics, 
Quantum Mechanics and Many Body Physics (superconductivity). 
The Russian doll property is expected to arise in models with infrared limit 
cycles, but there exist also some Field Theoretical models, like the cyclic 
sine-Gordon model, where the limit cycles appear in the ultraviolet 8 '9 . In 
the latter model the periodicity appears in some physical quantities like the 
effective central charge 9. 

3. The Glazek-Wilson model 

The Hamiltonian is the half-infinite matrix 4 

Hnim(gN, hN) = bn+m(5n,m -gN- ihN sign(n - m)) (3.1) 

where b > 1 and — oo < n, m < N. N is the cutoff. The Gauss elimination 
of the component 4>N of the wave function defines a new Hamiltonian with, 

gN-i=gN + 9}+ h?N, hN-! = hN = h (3.2) 
l -gN 

After p-iterations one gets 

gN-p = h tan ( t a n - 1 ( ^ ) + p / ? ) , /3 = t a n - 1 h (3.3) 

If ir//3 = p there is a cycle with period p, i.e. gN-P — gN- If if/P is irrational 
the flow of gN is chaotic. The model has an infinite number of bound states 
from 0 to —oo with Russian doll scaling. 

4. Russian Doll superconductors 

The BCS Hamiltonian for s-wave pairing is, 

N N 

HBCS = £ ejb]bj - G £ b)br (4.1) 
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where bj = Cjt-Cjt+ are Cooper pair operators and £j are equally spaced 
energy levels — w < Ej < UJ with level spacing 26. The ground state (con
densate) is characterized by the energy gap 

A0 ~ 2we~ l / g , g = G/8 « 1 (4.2) 

The RD Hamiltonian is a generalization of the BCS one: 

N N 

# = E £ihh - E (G + ̂  siSn^' - 3')) b]bj. (4.3) 
j = i j , j ' = i 

H is hermitean but breaks the time reversal symmetry. The gap function 
is complex and its modulus satisfies the Russian dolls scaling, 

A n ~ A0 e-™'h -> A n + i = e-AA„ (4.4) 

with A = p We shall call the solutions with n = 1,2,, . . . dolls. The 
corresponding Cooper pairs being larger and larger (see figure 4.1). 

te^,5*=sL. tc==::>i t c = ^ k 

1*=^*=* ^ k 

Fig. 4.1. Pictorial representation of the ground state (left) and the excited state (right) 
corresponding to the Q = 1 solution of the gap equation of the RD model. In the latter 
case the Cooper pairs are bigger than those forming the ground state. 

4.1. Renormalization Group of the RD model 

The Gauss elimination of the highest component leads: 

H(GN,rjN) -f H(GN-i,nN-i) (4-5) 

Giv-i + ir)N-i = GN + ir)N + JT^(GN + "7;V)(GJV - im) (4.6) 

Hence T]N = ?7JV-I is an RG invariant. In the large N limit one can define 
a variable s = log N0/N, where iV0 is the initial size of the system. 
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Fig. 4.2. Graphical representation of the RG equation 4.6. 

fs=(92 + h% ^ logf . (4.7) 
The effect of the coupling h is to accelerate the running of g with the scale. 
The solution to the above equation is 

g(s) = h tan /is + t a n - 1 ( ^ ) , g0=g{N0). (4.8) 

which exhibits a periodic behaviour 

g(s + X)=g(s) ^ g(e-xN) = g(N), X=^ (4.9) 

The number of RG cycles nc is equal to the number of solutions of the 
BCS gap equation. In every cycle the size of the system is reduced by the 
scaling factor e ~ \ Hence nc satisfies 

g-ncA^y ^ j _> nc = _ l o g N + c o r r e c t ions (4.10) 
7T 

In a practical example for h of order 1 and iV of order 1023, the number of 
cycles, i.e. dolls, will also be of order 1. 

4.2. Numerical Work- One Cooper Pair problem 

The RD Hamiltonian for one Cooper pair becomes the iV-dimensional ma
trix: 

Hi,k = £j $j,k - (G + irjsign(j - k)) (4.11) 

In the large N limit there are many bound states with wave function and 
energies, 
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V(e) 
(e-Eny-*' 

En~E0e-2™/h, n = 0 , l , . . (4.12) 

The RG period is now Ai = 2ir/h. Numerical diagonalization of the Hamil
tonian gives the exact eigenstates of one-pair Hamiltonian for N levels ( 
JV0 = 500 down to 30). The vertical lines are at the values JVn = e~nXlN0. 

Fig. 4.3. Self-similarity of the spectrum. 

Self-similarity of the spectrum: 

2TT 
En+1(N) = En(e-x*N), Ai = — 

h 

Russian Doll property 

(4.13) 

En+1(N)=e-x>En(N) 

The two properties are related: En(N) ~ N e~Xin. 

(4.14) 

4.3. Integrability of the Russian doll model 

The RD model is exactly solved a la Bethe using the inhomegenous XXX 
vertex model with a boundary matrix 6 

KQ = exp(—ia az), a = tan * ( —J (4.15) 

The Hamiltonian appears in an expansion of the transfer matrix in the 
inverse of the spectral parameter. The BAE's are given by 
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N 

n 02ia TT Ea ~ £j + iV 
Ea - £j - iy 

M 

n 
b=l&a) 

Ea-Eb + 2ir) 
Ea-Eb- 2ir] 

(4.16) 

and the total energy is E = YlaEa- In the semiclassical limit 77 —> 0, 
the RD model becomes the usual BCS model. In the large N limit where 
•q = hS —> 0 we get 

1 N 1 M 

j = l ^ - £J bJ[^a) Ea - Eb 
0 (4.17) 

If Qa = Q, Vo => Qth-doll, Ao ~ A0 e ^ / / * . If some Q^s / O w e expect 
a new type of elementary excitations (see figure 4.4). 

50 - ^ ? r £ 
*-* 

- -
» Q = l 
T Q = 2 

** 

" 

Fig. 4.4. Numerical solutions iJa corresponding to three choices: i) {Qa = 0 } ^ _ 1 ; ii) 
Qi = 1 and {Qa = 0}£ i 2 and hi) Qi = 2 and {Q a = 0}£ i 2 . 

Questions concerning the R D model 

(1) Nature of the new excitations. The Cooper pairs can be excited without 
breaking them. Qa appears as a principal quantum number. What is 
their dispersion relation? What is their statistics? It seems bosonic in 
contrast with the fermionic character of the standard BCS quasiparti-
cles. 

(2) Find the phase diagram at finite temperature. Are there new phases? 
(3) Find a macroscopic derivation of the RD Hamiltonian. The problem is 

that HRD breaks time reversal symmetry (T) while the usual phonon 
or other interaction processes do not break T? Some possibilities are 
external magnetic fields or spontaneous T breaking. 



The Cyclic Renormalization Group 417 

5. The Riemann hypothesis and the cyclic RG 

Riemann Hypothesis: all the non trivial zeros of the zeta function £(s) 
lie in the critical axis s — | + ir . 
Polya-Hilbert conjecture: there exist a Hamiltonian HR whose spectrum 
Ea are all the non trivial zeros: 

fffii = £ « i ^ ( ( | + i £ « ) = 0 (5.1) 

This is supported by the fact that the Ea are randomly distributed accord
ing to the GUE, which suggest that HR breaks time reversal. 
Quantum Chaos conjecture: HR is the quantization of a classical Hamil
tonian which has stable periodic orbits labelled by the prime numbers. 
Berry and Keating proposed HR — px which reproduces semiclassically the 
counting formula for the non trivial zeros. 

T T T 
tf(T)~-log--- (5.2) 

In Connes's work on adeles the zeros appear as absortion lines in the spec
trum of a Hamiltonian. 

Hints on the relation RH-RD model 
Generalize the RD Hamiltonian as follows: 

Hntrn = £„ Snim - In {g + ih sign(n - m)) fm, (5.3) 

The previous choice is (K = 1): 

, 1 v „ I -We h n = 0 , 1 , . . . ,_ . 
£ " = n ' / n = 1 ^ " ~ ( i V ( l - e ^ ) , n = - l , - 2 , . . . ( 5-4 ) 

Consider the new choice (K = 0): 

1 logiV 
en = 0, / „ = - = = • J3„ ~ - h - 2 — , n = 0 , ± l , . . . (5.5) 

\Jn n 
For N —> oo the spectrum becomes continuous converging towards E = 0 
algebraically (gapless RD scaling) and not exponentially (gaped RD scal
ing) . The eigenstates of the new model are given by 

^« r ^ , n » 1 (5.6) 
n 5 - r r E 
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K=l K=0 

n=0 n=0 

Fig. 5.1. Comparison of spectrums with gapped (right) or gapless (right) RD scaling. 

where TE depends on the energy E as 

h 

The key point is that the number of RG cycles 

n c - ^ l o g i V - ^ l o g ^ - f ^ -

is almost the semiclassical Riemann's formula 

T T T 

which suggest that 

Riemann zeros <$=>• Missing RG cycles (5.10) 

These ideas are explained in detail in reference 10 where a consistent quan
tization of the hamiltonian H = xp is proposed and the connection with 
the RD model is established. 

Acknowledgements I would like to thank Professors Weiping Zhang 
and Mo-Lin Ge for the kind invitation to participate in the XXIII Inter
national Conference of DGMTP and in the opening of the new building of 
the Nankai Institute of Mathematics. 

(5.7) 

(5.9) 
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Fig. 5.2. Picture of a collection of Russian dolls or Matrioskas. They axe choosen to 
symbolize the scaling behaviour typical of a model with RG limit cycles. 
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A state in quantum mechanics is defined as a positive operator of norm 1. For 
finite systems, this may be thought of as a positive matrix of trace 1. This 
constraint of positivity imposes severe restrictions on the allowed evolution of 
such a state. From the mathematical viewpoint, we describe the two forms 
of standard dynamical equations - global (Kraus) and local (Lindblad) - and 
show how each of these gives rise to a semi-group description of the evolution. 
We then look at specific examples from atomic systems, involving 3-level sys
tems for simplicity, and show how these mathematical constraints give rise to 
non-intuitive physical phenomena, reminiscent of Bohm-Aharonov effects. In 
particular, we show that for a multi-level atomic system it is generally impos
sible to isolate the levels, and this leads to observable effects on the population 
relaxation and decoherence. 

1. In t roduc t ion 

The standard description of a quantum state suitable for an open system 
is by means of a density matrix p, a positive matrix of trace 1. For a 
hamiltonian (non-dissipative) system one obtains a unitary evolution of 
the state. For a non-dissipative system the time evolution of the density 
matrix p{t) with p(to) = po is governed by 

p(t) = U(t)PoU(t)\ (1.1) 

•Presented at DGMTP XXIII, Nankai Institute, Tianjin: 25 August 2005 

mailto:a.i.solomon@open.ac.uk
mailto:sgs29@cam.ac.uk


Bohm-Aharonov Type Effects in Dissipative Atomic Systems 421 

where U(t) is the time-evolution operator satisfying the Schrodinger equa
tion 

ih±U(t) = HU(t), 17(0) = / , (1.2) 
at 

where I is the identity operator. The state p(t) equivalently satisfies the 
quantum Liouville equation 

ihjtp(t) = [H, p(t)} EE Hp(t) - p(t)H. (1.3) 

H is the total Hamiltonian of the system. (In the context of Quantum 
Control theory, we may assume that H = H(f) depends on a set of control 
fields fm: 

M 

H(f) =H0+Y^ fm(t)Hm, (1.4) 

where Ho is the internal Hamiltonian and Hm is the interaction Hamil
tonian for the field fm for 1 < m < M.) The advantage of the Liouville 
equation (1.3) over the unitary evolution equation (1.1) is that it can easily 
be adapted for dissipative systems by adding a dissipation (super-)operator 
LD[p(t)}: 

ihp(t) = [H, p(t)\ + ihLD[p(t)\. (1.5) 

In general, uncontrollable interactions of the system with its environ
ment lead to two types of dissipation: phase decoherence (dephasing) and 
population relaxation (decay). The former occurs when the interaction with 
the enviroment destroys the phase correlations between states, which leads 
to a decay of the off-diagonal elements of the density matrix: 

Pkn{t) = -^{[H,p(t)])kn-rknpkn(t) (1.6) 

where Fkn (for k ^ n) is the dephasing rate between \k) and \n). The latter 
happens, for instance, when a quantum particle in state \n) spontaneously 
emits a photon and decays to another quantum state |fc), which changes 
the populations according to 

Pnn{t) = ~-([H,p(t)})nn + ^ [lnkPkk(t) - -yknPnn{t)\ (1.7) 

where jknPnn is the population loss for level \n) due to transitions \n) —> 
\k), and jnkPkk is the population gain caused by transitions \k) —> \n). 
The population relaxation rate jkn is determined by the lifetime of the 
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state |n), and for multiple decay pathways, the relative probability for the 
transition \n) —> \k). Phase decoherence and population relaxation lead 
to a dissipation superoperator (represented by an N2 x N2 matrix) whose 
non-zero elements are 

{LD)kn,kn = — ̂ kn M n 

(LD)nn,kk = +lnk k ^ U (1.8) 

\lJD)nn,nn = Z-in^fc 1/kn 

where Tkn and jkn are positive numbers, with Tkn symmetric in its indices. 
The N 2 x N2 matrix superoperator LD may be thought of as acting on the 
N2-vector V obtained from p by 

V[(i-i)N+j] = pij. (1.9) 

The resulting vector equation is 

V = LV = (LH + LD)V (1.10) 

where LH is the anti-hermitian matrix derived from the hamiltonian H. 
The values of the relaxation and dephasing parameters may be deter

mined by experiment, or simply chosen to supply a model for the dissipation 
phenomenon. But they may not be chosen arbitrarily; the condition of pos-
itivity for the state p imposes constraints on their values, as does their 
deduction from rigorous theory. We illustrate this by demonstrating the 
constraint for a two-level system. 

2. Two-level systems 

2.1. Unitary evolution 

The general hamiltonian for a two-level system is given, up to an additive 
constant, by 

(2-1) 

0 

"1 
0 

o' 
- 1 + fx 

"0 1" 
1 0 + fv 

"0 
i 

—i 
0 

H = w 

which we assume here to be time-independent. 
This corresponds to the (superoperator form) LH, where 

0 i(fx + ify) i(-fx + ify) 

LH 
-i (-fx + ify) - 2 iw 0 i ( - / x + ify) 

-i (fx + ify) 0 2 iw i(fx+ ify) 

0 -i(fx+ify) -i(-fx+ifv) 0 
(2.2) 
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Note the useful rule for obtaining the equivalent N2 x JV2 matrix action 

ApB <=» A ® BT V. 

The corresponding evolution equation for the 4-vector V corresponding 
to the state p is 

V = LHV. (2.3) 

This is equivalent to Eq.(l . l) , which clearly preserves the trace of p, and 
also its positivity, using the definition of a positive matrix as one of the 
form MM^. (Of course this result is true in general.) 

2.2. Pure dissipation 

The dissipation (super-)operator is 

LD = 

" - 7 2 1 0 0 712 

o -r o o 
o o -r o 

. 7 2 1 0 0 - 7 1 2 . 

The corresponding evolution equation 

V = LDV. 

has solution 

V(t) = exp(LDt)V{0) 

which corresponds to a value of the state p(t) 

' P l l ( 7 l 2 + 7 2 l £ ) + 7 l 2 / 
721+712 

e~trP2i 

3 2 2 ( i - £ ) c-tr 

721PU ( ! - £ ) + / 
721 "f 

Pl2 

522(721+7l2-E) 
712 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

where E — e '(721+712)̂  for which it may readily be checked that Trp(t) 

P11 + P22 = 1- Additionally, detp(i) is given by 

PnP22e't^+^)-(e-2tr)p12P2i+2 
Pllll2p22l2l (1 - e-^+I^Y 

(721 + 712) 

which is clearly positive for all t when 

2r > 712 + 721 

(2.8) 

(2.9) 
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since det p(i) > e_t(721+712) detp(O) > 0. Conversely, when the condition 
Eq.(2.9) is violated, it is easy to display examples for which the evolution 
does not produce a state. For example, for a pure state, which satisfies 
P11P22-P12P21 = 0, choosing j 1 2 > 2r ,7 2 i = 0, Eq.(2.8) is clearly negative. 

2.3. General dissipation 

When the hamiltonian matrix LH and the dissipation matrix LD com
mute, the conclusions of the previous two subsections produce the same 
constraint for the solution of Eq.(l.lO). In the general case these matrices 
do not commute; they do however generate a local semi-direct group. More 
accurately the Lie algebra is locally a semi-direct sum^, which then gener
ates a semi-group. In this case also, general theory, which we discuss in the 
next section, shows that the trace and determinant conditions of Eq.(2.9) 
remain unchanged. 

3. Rigorous formulations 

3.1. Kraus formalism and semi-groups 

The global form of the evolution equation Eq.(l.l) in the presence of dissi
pation is due to Kraus2. The evolution of the state p is given by 

p{t) = Y,Wi{t)PoWi{t)\ (3.1) 
i 

with 

Y,Wi(tyWi(t) = I. (3.2) 
i 

Equation(3.1) and the condition Eq.(3.2) clearly guarantee both positivity 
and unit trace. 

Further, though less obviously, this system implies the existence of a 
semi-group description of the evolution. For if we consider the set G whose 
elements are the sets {u>i} satisfying Eq.(3.2), then if g = {wi} and g' = 
{w't} are two elements of G, then so too is gg', where the product is taken 
in the sense of set multiplication. Although closed under composition, the 
only elements of G which possess inverses are the singleton sets {U}, where 
U is unitary. 

t i n the present two-level case, the local Lie algebra is the 12-element gl(3, R) © R3, and 

in general gl{N2 — \,R)® RN - 1 , as discussed in1. 
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3.2. Lindblad formalism 

In so far as the Kraus formalism provides an analogue of the unitary evo
lution equation Eq.(l . l) , the Lindblad3 formalism gives an analogue of the 
Schroedinger equation Eq.(1.3): 

p(t) = L\p(t)]p(t) 

= -i[H, p(t)} + i £ ([Vkp(t), V£] + [Vk, p(t)Vi}) (3.3) 

where the Vk are NxN matrices, but otherwise arbitrary*. It may be proved 
that the dissipation superoperator LD arising from Eq.(3.3) has negative 
eigenvalues. Since the evolution dynamics arises from exponentiation of Lot 
it follows that operators exp(Lz)i) in the theory will become unbounded for 
arbitrary negative t. This means that not all operators will have inverses and 
implies a semi-group character to the evolution, as in the Kraus formalism. 

3.3. 2 x 2 Lindblad example 

Choosing four independent complex ^-matrices 

"oi 0" 

0 0 
v2 = 

"0 a2 

0 0 
^3 = 

"0 0" 

a3 0 
v4 = 

"0 0" 

0 tt4 

we obtain for the dissipation superoperator LD 

~-\a3\
2 0 0 \a2\

2 ' 

0 -1/2 A 0 0 

0 0 -1/2 A 0 

. N 2 0 0 - |a 2 | 2 . 

where A = |ai |2 4- |a2 |2 + |a3|2 + |a.412, which on comparison with Eq.(2.4) 
gives, defining f = | ( | a i | 2 + |o4|2) 

721 = M 2 , 7i2 = |a2 |2 , r = f + -(712+721) 

whence the constraint Eq.(2.9). Note that (712 + 72i)/2 is the phase deco-
herence forced by population relaxation and T is the contribution of pure 
dephasing. 

*We may also choose an arbitrary number of matrices Vk. 
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3.4. General N X N Lindblad case 

A convenient choice for the Vk matrices may be made by defining 

V[i,j] = a[i,J]EiJ 

where Eij is the standard basis for TV x N matrices, with (Eij)ap = Sia5j0 
and we use the index notation [i, j] = (i — \)N + j . The relaxation and 
decoherence parameters are defined by 

I |2 
uji ( ' ^ i ) 

f . j = 2( l aM]| +\a\j,j]\ ) (i^j) 

r« = O 5 Z 0 O [ M I 2 + IO[MI2) ( * ^ J ) (3.4) 

4. Bohm-Aharonov type effects 

What we mean by Bohm-Aharonov type effects in the title of this note, and 
of this section, is the impossibility of isolation of quantum subsystems. We 
illustrate this type of effect by considering the use of a two-level atomic 
system as, say, a qubit, when this is a subsystem of a multi-level system. 

We consider the case of pure dissipation as discussed in subsection 2.2. 
Choosing values 721 = 0, 712 = 7, T = ^7, which satisfy the constraint 
Eq.(2.9), the state evolution is given by 

P(t) = 
Pn + P11 (1 - e-*T) e - 1 / 2 * T p i 2 

Pne -ti 
(4.1) 

where the initial state is 

P(0) 
P11 P12 

P21 P22 

We now assume that our two-level system is embedded in a three level 
system, so that the state's evolution is given by 

> i i + p 2 2 ( l - e " ^ ) e-V2tip12 

Pit) -1 /2 t 7 P21 

P31 

P22Z 

P32 

-t-y 

Pl3 

P23 

P33 

(4.2) 

Now consider three examples for the state evolution. In all cases we start off 
with a pure state, in the first case with the third level not being populated. 
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4.1. Unpopulated third level 

Assume an initial pure state represented by the 3-vector v = [ I /N /2 , 1/V2,0] 
corresponding to the density matrix 

1 
2 

"1 1 0" 
1 1 0 

.0 0 0. 

Assuming that the third level is unaffected, the state evolution is given by 
(measuring t in units of I/7) 

" l - l / 2 e - < 

1/2 e-1 '2* 

0 

P(t) 

1/2 e-1/2* 

1/2 e-* 

0 

(4.3) 

In this case the naive picture of the evolution is justified, as the third level 
remains unpopulated, the eigenvalues remain positive (> 0), and the extra 
levels are not affected by the dissipative dynamics. The third level plays no 
role in the evolution. However, in general an upper level will not be totally 
unpopulated; and in this case the constraints play a role. 

4.2. Equally populated third level 

We take the initial pure state vector to be 

w = [l/v /3,1/V3.1/V3] 

giving the evolution 

Pit) = 3 

2 - e " 

e - l / 2 t 

1 

-l/2t 

1 

(4.4) 

(4.5) 

As in subsection 4.1 we have assumed that the third levels are not affected 
by the dissipative dynamics. However, a numerical calculation shows that 
the eigenvalues of p(t) are not all positive; therefore the assumed evolution 
does not give a state, and so the naive assumption that the other levels 
remain unaffected is false. 

4.3. Pure dephasing 

Population relaxation is not the only source of constraints on the decoher-
ence rates for N > 2. Even if there is no population relaxation at all, i.e., 
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tkn = 0 for all k,n, and the system experiences only pure dephasing, we 
cannot choose the decoherence rates Tfcn arbitrarily. For example, setting 
ri2 / 0 and T23 = Ti3 = 0 for our three-level system gives 

Pit) 
Pn e r i 2 Vi2 Pi3 

Tl2tP21 P22 P23 (4.6) 
P31 P32 P33. 

Choosing p(0) as in Eq. (4.4) we again obtain a density operator p{t) with 
negative eigenvalues, as a simple calculation will reveal. This shows that 
there must be additional constraints on the decoherence rates to ensure 
that the state of the system remains physical. 

5. Conclusions 

We have shown that it is impossible to isolate a two-level system from a 
multi-level system in the sense of assuming that the other levels will not be 
affected by relaxation and decoherence effects in the "isolated" system. A 
more general treatment of the effects noted here may be found elsewhere4; 
in that paper the constraints are explicitly described for some multilevel 
systems, and the effects of these constraints are discussed. 
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The present paper mainly reviews the following two topics: Part I; topological 
perturbation to study spontaneous symmetry breaking, and Part II; quantum 
analysis, <j-derivative and exponential splitting. In both parts, the concept of 
noncomutativity of procedures or operation is essentially important. This effect 
appears in taking some limits in Part I, and also in quantum differentiation in 
Part II. 

1. Part I : Topological Perturbation to Study Spontaneous 
Symmetry Breaking 

1.1. Topological Interaction Method 

As is well known, a continuous (namely second-order) phase transition oc
curs only in the thermodynamic limit namely in the limit TV —*• oo for the 
system size N. The order parameter to characterize this symmetry break
ing appears below the critical point and it is obtained by taking the limit 
N —> oo first and then taking the limit H —> +0 for the external symme
try breaking field H, as was explicitly performed by C. N. Yang1 in the 
two-dimensional Ising Model. Thus, he obtained exactly the uniform spon-
tanious magnetization ms in the same model. Another exact solution was 
given by McCoy and Wu2 for the surface spontaneous magnetization in a 
similar limiting procedure. 

Recently we have studied the surface spontaneous magnetization by 
calculating the boundary-boundary correlation function and by taking the 
limit3 

l i p < SiSj >boundary= ™b, (1.1) 
\i—j\-*oo 

where Si and Sj denote the spins in opposite boundaries and m\, denotes 

mailto:msuzuki@rs.kagu.tus.ac.jp
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the surface spontaneous magnetization. The boundary-boundary correla
tion functions can be evaluated using the topological interaction method 
proposed by the present author4 For example, the topological perturbation 
or interaction J' is introduced4-6 in the two-dimentional Ising model as 
shown in Fig.l. 

'' 1 
V 

V 

h 

/ 

J' 
/ , 

t 

y 3 

y/N-2 

y>N 
,--—--

' 

M-2 M-l M 1 

Fig. 1. Topological interaction J ' to connect the two opposite boundary spins Si ^ and 

Our Hamiltonian including the topological perturbation is given by 

N 

Ti, = Tio — J' 2_^ S\,kSM,k\ , (1.2) 
fc=i 

where 
N M M - l JV s 1V1 1V1 — 1 >. 

Tio = -J22\z2l
Si>kSi'k+x + z J Sj,kSj+i,kJ- (1-3) 

fe=i \ j = i J '=I 

with Sj,k = ±1 and SjtN+i = Sj,i- Clearly, J' changes the topology of the 
system. If J' ^ 0, the quantity (S'l.fcS'M.fc) denotes short-range correlation. 
If J' = 0, it denotes long-range correlation for M —> oo and consequently it 
yields the square of the boundary spontaneous magnetization as shown in 
(1). Thus, the topology of this system changes drastically according to the 
situation whether J' ^ 0 or J ' = 0. The bounadary-boundary correlation 
function C M ( 0 ) (where CM{J') = {Si,kSM,k)j') is given by 

1 dlogZ(J') 
CM(0) lim lim (1.4) 

J>^+ON-^OO/3N dJ' 

where Z{ J') is the partition function of the relevant system, N denotes the 
length of the relevant system in the vertical direction in Figure 1 and (3 is 
the inverse temperature (i.e., f3 = l/ksT). 
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After lengthy calculation5,6, we obtain 

c« (0 )=ifs^ (15) 

where 

M9) = f{a{6)a{6)M + f(^-)a(9)-M, (1.6) 

_ (a - z2/x1)(a - z2Xl) . 1^-zi 
/ W " (1 - z2

2)(a2 - 1) ' ^ - i + z i ' l j 

and a(6) is the larger solution of the following equation 

(1 + z2)(l + 4) - 2zi(l - «2 c o s 6 0 " z2(l - 22)(a + a'1) = 0, (1.8) 

where Zj = taxih Kj(j = 1,2), and Kj = j3Jj. The correct branch of the so
lution differes above and below the critical point Tc. The functions f(a(6)) 
and f(l/a(0)) are shown5 to have the following properties: 

a) For T>TcJ(a(0)) = l,f(l/a(6)) = O(62), (1.9) 

and 

b) for T < Tc, / ( l / a (0 ) ) - 1, /(a(0)) = O(02). (1.10) 

Using the above properties, we can evaluate the asymptotic form of the 
correlation function C M ( 0 ) for large M. For T > TC, the correlation function 
CM{0) is given in the form5 

CM(0) ^ ^ g U x p ( - H ) (1.11) 

where the correlation length £ is given by 

T - 1 

log(-
'z2{l + z1)' T-Tr. 

oo (1.12) 

as T -> Tc. For T < Tc, CM(0) is given in the form5 

C M ( 0 ) ^ m g + ^ _ ( T ) V ^ : + B ( r ) + ^ J e x p ( - j J ) (1.13) 

using the renormalized evaluation method of singular integrals7, where 
-A-(T) > 0. The existence of the negative sign in front of A-(T) in (1.13) 
shows the non-monotonic behaviour of C M ( 0 ) with respect to M even in 
the ferromagnetic case (Jx > 0 and J2 > 0). This is an unexpeted result. 
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This happens only for the boundary-boundary correlation functions because 
of the cut-off effect of long-range correlation contribution from the region 
wider than the system size M compared to the infinite system. At T = Tc, 
we have 

\ / T=TC 

The order of the two limits TV —> oo (first) and M —> oo is vital in order to 
obtain the boundary spontaneous magnetization m\> in (1.13). 

1.2. Applications to Quantum Spin Systems 

The above topological interaction method can be also applied to quantum 
spin chains such as the XY-model and transverse Ising model8. Our Hamil-
tonian is given by 

N-l , s N 

n = - E (-W'i+i + V ? < i ) - ^Bff E *'• (L15) 

We introduce the dimensionless parameters 7 and r] through the rela
tions Jx>3/ = J ( l ± 7) and 77 = HBH/J. The correlation function C^ = 
(afafj)T=o is shown to approach the following limit 

for T] < 1 at T = 0. When 7 = 1, we have m\ x = 1 — rf. This agrees with 
the result by Barouch and McCoy9, Pfeuty10, Suzuki11 and Peschel12. 

1.3. Symmetry Breaking by Local Fields 

It is also interesting to study the following situation in which an external 
field is applied to a finite (local) region fi, and to ask what happens, namely 
to evaluate the total magnetization13. We have derived the result that the 
total magnetization M(T,H) is given in the form 

M(T,H) = Nm2
sTn(T,H) (1.17) 

with the uniform spontaneous magnetization ms for the large total number 
of spins, N, where 

WH) = < S i n^y > + x J-;Mn = £ > (1.18) 
v ' <cosh(hMn)>+ ms f^ 
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for Sj — ±1 and h = PUBH with the uniform spontaneous magnetization 
ms per spin. Here, < • • • >+ denotes the average over the state \&+ which 
is a symmetry-broken state obtained in the limit H —> +0 after taking 
the thermodynamic limit N —> oo. The above factor J-"Q(T,H) in (1.17) 
is shown5 to be finite and non-vanishing even at Tc for H ^ 0, because 
the average < sinh(/iMn) >+ is proportional to ms near the critical point 
for a finite domain fi. In particular, when Q is given by a single site j , we 
have 13'14 < sinh(/iMn) > + = (sinh h)ms and < cosh(hMa) >+= cosh/i. 
Therefore, we arrive at13 J j (T, i?) = tanh(/3/XB^?). This yeilds the formula 

M(T, H) = Nm2
s tanh(/3/xBff). (1-19) 

For H —> oo, we have M(T, oo) = A r̂rig, which agrees with C. N. Yang's 
result1. The above general formula (1.17) is also useful in evaluating the 
critical exponent of the uniform spontaneous magnetization numerically 
(for example, using Monte Carlo simulations) in general dimensions15. 

2. Part II : Quantum Analysis, q-Derivative and 
Exponential Splitting 

2.1. Quantum Analysis and Exponential Splitting 

We discuss here the quantum derivative16""21 of an operator function f(A) 
with respect to the operator A itself. Our quantum analysis is based on the 
differential df(A), which depends on its definition. A typical one is given 
by the following Gateau differential 

df(A) = lim fV + W - m (2.1} 
h—>0 h 

Another one is given by the commutator 

df(A) = [H,f(A)] (2.2) 

for a certain fixed operator H. These differentials both satisfy the Leibniz 
rule, 

d(f(A)g(A)) = (df(A))g(A) + f(A)dg(A). (2.3) 

Then, it is easily shown21 that using the inner derivation 5A defined by 
5AQ = [A, Q] = AQ - QA, we have 

5Adf(A) = Sf{A)dA (2.4) 
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because d(Af(A)) = d(f(A)A), namely 

(dA)f(A) + Adf(A) = (df(A))A + f(A)dA. (2.5) 

The above relation (2.4) can be written formally as 

df(A) = 5j^dA. (2.6) 
OA 

In fact, the ratio of the two hyperoperators 5f{A) a n d 5A always exists in 
the space of hyperoperators LA(= A x) and 5A- Thus, we defined16-21 the 
quantum derivative by 

df(A) = SML= f(A)-f(A-5A)^ 
dA SA 5A 

which is a function of A and 5A in our quantum analysis. These hyperoper
ators A and 5A commute with each other and consequently this function of 
A and 5A can be easily treated in analytical calculations. Quantum correc
tions can be also easily obtained in our formulation, as shown below. This 
is one of the merits of our quantum analysis16-21 compared to the other 
formulation22 based on Feyman's indices23. In fact, it is easily shown that 

dA -f 
Jo 

df{A) _ i f (1) fW{A-t6A)dt, (2.8) 

where f(n\x) denotes the n-th derivative of f(x). 

The n-th order quantum derivative dnf(A)/dAn is similarly expressed 

by 

d«f(A) _ 
dAn J J dt1J

tldt2--.J
n~1dtnf(n\A-f2tjtj), (2-9) 

where 5j is a hyperoperator defined using 5A as 

5j : Bn = 5j : B B = Bj-\5AB)Bn-j. (2.10) 

The following general operator Taylor expansion formula holds 1 6 - 2 1 

oo 

71=0 

+ $ > " dtx dt2--- d t B / ( n ) ( > l - S t ^ 3 - ) : Bn. (2.11) 
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J(A+xB) _ V ^ x u e . gn 

= etA' 

From this general formula, we can easily obtain16 the well known Feynman 
expansion formula on e

t(A+xB) as 

^ X" dnetA 

n n! dAn 

T i " / dh I' dt2 • • • f" ' dt„B(ti)B(t2) • • • B{tn), (2.12) 
n=0 Jo Jo Jo 

where J5(t) is defined by B(t) = e~t5AB = e~tABetA. 
There are many other applications of the present formulation (namely 

quantum analysis) in physics16-21 , and also in the derivation of higher-
order exponential splitting formulas24-40 such as 

ez(A+B) _ ^tixA^xB^xA^tixB _ _ _ QtMxA , Q(x
m+l) (2 13) 

The splitting parameters {tj} are obtained using the above quantum 
analysis16-21 , or using the recursive scheme proposed by the present 
author16. 

2.2. An Integral Representation of q-Derivative 

The g-derivative Dq is defined by41 

D9m = nf-fv s
 d^m (2.14) 

(q — l)x dqx 
for an ordinary function f(x). This derivative is related to Euler's identi
ties, the Jacobic identity, and the Ramanujan formula41. Clearly we have 
Dq_if{x) = f^\x), when f(x) is analytic. It is easy to show that 

,2 t/^ _ f(Q2x) -(q + l)f(qx) + qf(x) 
q(q — l)2x2 

The formal similarity between (2.7) and (2.14) yields, in general, the 
following integral representation of Dqf(x): 

Dlf(x) = JyH '~Z: \\L, "' (2-15) 

Dn
qf{x) = [n]q\ J dti y ' dt2 • • • J "_l dtnf^ ({l+(g-l) J2h QJ~'}A, 

(2.16) 
where [n]q = 1 + q + q2 + • • • + qn~\ and [n],! = [1], x [2], x • • • x [n]q. For 
example, we have 

Dqf(x) = y / « ( (1 + (q - l)t)x\dt. (2.17) 
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It is interesting to remark that the quantum derivative and g-derivative 
have similar integral representations, while the former is useful for non-
commutative operator functions and the latter is denned for ordinary func
tions. The quantum analysis is also useful in evaluating the commutator 
[/(-A).g(B)\, which includes the commutators [exA,eyB]. In fact, we have 

[f(A),9m = dJ^dJ^[A,B]. (2.18) 

This is useful in Kubo's linear response theory42 in the form 

rP 
r e - " " A]=e~Pn f exn[A,H}e-xnd\ 

Jo 

For some applications, modifications and extensions of the quantum 
analysis proposed by the present author, see References 43-48. 
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Reduction of a dispersionless type integrable system (dcmKP hierarchy) to the 
radial Lowner equation is presented. 

1. Introduction 

Recently reductions and hodograph solutions of dispersionless/Whitham 
type integrable systems are intensively studied1-4. In this article we re
port another example; reduction of the dispersionless coupled modified KP 
(dcmKP) hierarchy to the (radial) Lowner equation. 

The dcmKP hierarchy introduced by Teo5 is an extension of the disper
sionless mKP hierarchy6 with an additional degree of freedom, or in other 
words, a "half" of the dispersionless Toda lattice hierarchy7'8. 

The Lowner equation was introduced by K. Lowner9 in an attempt to 
solve the Bieberbach conjecture. It is an evolution equation of the conformal 
mapping from (a chain of) subdomains of the unit disk onto the unit disk. 
We can also define the same kind of equation with different normalization 
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which is called the "chordal Lowner equation". See Lawler, Schramm and 
Werner10 §2.3 for details. The original Lowner equation is, therefore, often 
called the "radial Lowner equation". 

The reduction of the dispersionless KP hierarchy11'12,8 to the chordal 
Lowner equation (and its generalization) has been studied by Gibbons and 
Tsarev1, Yu and Gibbons2, Manas, Martinez Alonso and Medina3 and oth
ers. Our question is: how about the radial Lowner equation? The answer 
is that there appears another degree of freedom and the resulting system 
turns out to be the dcmKP hierarchy. 

In the following two sections we review the two ingredients, the Lowner 
equation and the dcmKP hierarchy. The main result is presented in the 
last section. Details including proofs will be published in the forthcoming 
paper. 

2. Radial Lowner equation 

In this section we review the (radial) Lowner equation and introduce related 
notions. Since we are interested in algebro-analytic nature of the system, 
we omit reality/positivity conditions which are essential in the context of 
the complex analysis. 

The Lowner equation is a system of differential equations for a function 

w = g(X, z) = e~*™z + 60(A) + 61(A)*-1 + b2{X)Z-2 + ••• (2.1) 

where A = (Ai , . . . , Ajv) and z are independent variables. In the complex 
analysis the variable z moves in a subdomain of the compliment of the unit 
disk and the variables Aj parametrize the subdomain. In our context g(X, z) 
is considered as a generating function of the unknown functions 4>(X) and 
bn(X). We assume that for each i = 1 , . . . , N a driving function K;(A) is 
given. The Lowner equation is the following system: 

^ ( A ; , ) = 5 ( A ; , ) ^ ± ^ M ^ , i = l,...,N. (2.2) 
oXi Ki(X) - g(X; z) dXi 

(The original Lowner equation9 is the case N — 1.) 
Later the inverse function of g(X, z) with respect to the z-variable will 

be more important than g itself. We denote it by /(A, w): 

z = /(A, w) = e+Ww + c0(A) + c^A)™"1 + c2(A)ur2 + • • • . (2.3) 

It satisfies g(X,f(X,w)) = w and /(A, g(X, z)) = z, from which we can 
determine the coefficients c„(A)'s in terms of <j>(\) and bn(X)'s. The Lowner 
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equation (2.2) is rewritten as the equation for f(X,w) as follows: 

df ,. . w + iu(X) d<t>(\) df /% N , x ^-(X;w)=w x±J.-rU.^L(X;w). (2.4) 
oXi w - K»(A) oXi dw 

The compatibility condition for the system (2.2) or (2.4) is: 

8K> = n Kj + Ki d^ (2 5) 
U\i Kj — Ki u\i 

d24> AKiKj d<j> d(j> 

dXidXj (^ — Kj)2 d\i d\j ' 

for any i,j (i / j). 
The Faber polynomials are defined as follows13: 

(2.6) 

$n(A,«;):=(/(A,ti ;)n)>o. (2.7) 

Here (-)>o is the truncation of the Laurent series in w to its polynomial 
part. 

3. dcmKP hierarchy 

We give a formulation of the dcmKP hierarchy different from Teo5. The 
equivalence (up to a gauge factor) will be explained in a forthcoming paper. 

The independent variables of the system is (s, x, t) where t = (ii, t2, •..) 
is a series of infinitely many variables. The variables x and t\ appear in the 
equations only as the combination x + t\, so we often omit x. Namely, "ii" 
should be understood as the abbreviation of x + t\. The unknown functions 
<j>(s, t) and un(s, t) (n = 0,1, 2 , . . . ) are encapsulated in the series 

C(s,t;w) =e^ ( 5 ' ' )u) + uo(s,t) + u i ( s ,0« ' " 1 + u2(s,t)w-2 + • • • , (3.1) 

where w is a formal variable. The dispersionless coupled modified KP hier
archy (dcmKP hierarchy) is the following system of differential equations: 

— = {Bn,C}, n = l , 2 , . . . . (3.2) 

Here the Poisson bracket {, } is denned by 

rtl •, , M df dg df dg 
{fis,x),9(s,x)}:=w—--W^ — , (3.3) 

and Bn is the polynomial in w defined by 

Bn:=(Cn)>o + \(£n)o, (3-4) 
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where (-)>o is the positive power part in w and (-)o is the constant term 
with respect to w. 

It is easy to construct a theory for this system similar to those for the 
dispersionless KP hierarchy or the dispersionless Toda hierarchy8. 

4. Main results 

In this section we show that a specialization of the variables A in f(\,w) 
gives a solution of the dcmKP hierarchy. 

Suppose X{s,t) = (Xi(s,t),..., Ajv(s,£)) satisfies the equations 

™*i ni\( ±\\®Xi 

where i>"(A) are defined by 

vn{X):=Kj(X)^(X,Kj(X)) 

They satisfy the equations 

dlogw 
(X,w) 

W = Kj-(A) 

9 < 

where 
2KiKj 

(Kj — Kj) OAi 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The hydrodynamic type equations (4.1) can be solved by the generalized 
hodograph method of Tsarev14: Let -Fi(A) be functions satisfying 

(4.5) 

(4.6) 

BF 

Then the hodograph relation 
oo 

F;(A(s,t)) = * + ]>>? (A(s,t))£„ 
n=\ 

determines the solution of (4.1), X(s,t), as the implicit function. 
Our main result is as follows: let f(X,w) be a solution of the radial 

Lowner equation (2.4) of the form (2.3) and X(s,t) be a solution of (4.1). 
Then the function £ = C(s, t\ w) defined by 

C(s,t;;w) := f(X(s,t),w) 

= e+WVw + co(X(s, t)) + Cl(X(s, t))uTx + c2(A(s, t))w~2 + ••• (4.7) 
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is a solution of the dcmKP hierarchy (3.2). 

In the proof we construct the ^-function7 '8 , following the method by 

Manas, Martinez Alonso and Medina3 . 

If we s tar t from the chordal Lowner equation instead of the radial 

Lowner equation, we obtain a solution of the dispersionless K P hierarchy. 

This is due to Gibbons and Tsarev1 , Yu and Gibbons 2 , Manas, Martinez 

Alonso and Medina3 . The generalization to the Whi tham hierarchies is con

sidered by Guil, Mafias and Martinez Alonso4 . Note tha t their generaliza

tion does not contain the radial Lowner case, because of the normalization 

at the infinity. 
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We discuss quantum deformations of Jordanian type for Lie superalgebras. 
These deformations are described by twisting functions with support from Borel 
subalgebras and they are multiparameter in the general case. The total twists 
are presented in explicit form for the Lie superalgebras sl(m|n) and osp(l|2n). 
We show also that the classical r-matrix for a light-cone deformation of D = 4 
super-Poincare algebra is of Jordanian type and a corresponding twist is given 
in explicit form. 

1. Introduction 

The Drinfeld's quantum group theory roughly includes two classes of Hopf 
algebras: quasitriangular and triangular. The (standard) g-deformation of 
simple Lie algebras belongs to the first class. The simplest example of 
the triangular (non-standard) deformation is the Jordanian deformation 
of sl(2). In the case of simple Lie algebras of rank > 2 some non-standard 
deformations were constructed by Kulish, Lyakhovsky et al.1-4 . These de
formations are described by twisting functions (which are extensions of 
the Jordanian twist) with support from Borel subalgebras, and they are 
multiparameter in the general case. We call their as the deformations of 
Jordanian type. Total twists of Jordanian type were constructed for all 
complex Lie algebras of the classical series An, Bn, Cn and Dn. 

In this paper we discuss quantum deformations of Jordanian type for 
Lie superalgebras. The total twists are presented in explicit form for the 
Lie superalgebras sl(m\n) and osp(l|2n). We show also that the classical 

•This work is supported by the grants RFBR-05-01-01086 and INTAS-OPEN-03-51-
3350. 
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r-matrix for a light-cone deformation of D = 4 super-Poincare algebra is of 
Jordanian type and a corresponding twist is given in explicit form. 

2. Classical r-matrices of Jordanian type 

Let g be any finite-dimensional complex simple Lie superalgebra then g = 
n_ © f) ©n + , where n ± are maximal nilpotent subalgebras and f) is a Cartan 
subalgebra. The subalgebra n + (n_) is generated by the positive (negative) 
root vectors eg (e_g ) for all /? 6 A+(g). The symbol b+ will denote the 
Borel subalgebra of g, b+ := f) © n+ . Let 6 be a maximal root of g, and let 
a Cartan element he £ F) and a root vector ee s n+ satisfies the relation 

[he, ee] = eg. (2.1) 

The elements he and ee are homogeneous, i.e. 

deg(he) = 0, deg(e0) = 0, or 1 . (2.2) 

Moreover, let homogeneous elements e±i indexed by the symbols i and —i, 
(i = 1,2,.. . , JV), satisfy the relations 

[he, e-i] = U e_j, [he, e,] = (1 - U) e* (U e C), 
(2.3) 

[e*, e-j] = 5tj ee, [e±,, e±j] = 0 , [e±i, ee] = 0 , 

provided that 

deg(ee) = deg(e;) + deg(e_;) (mod 2). (2.4) 

For the Lie superalgebra JJ the brackets [•, •] always denote the super-
commutator: 

[x, y] := xy - (_l)des(*) d^^yx (2.5) 

for any homogeneous elements x and y. 
Consider the even skew-symmetric two-tensor 

N 

re A® =t(heAee + ] T ( - l ) d e ^ ) deg(e_()e4 A e _ . ) ( 2 .6) 

t= i 

where 

deg(0 = deg(efl) = deg(ei) + deg(e_i) (mod 2), (2.7) 

and we assume that the operation " A " in (2.6) is graded: 

et A e^ := et ® e_i - (-l)d*^ d«*(e-i)e_. g, g.. (2.8) 
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It is not hard to check that the element (2.6) satisfies the classical Yang-
Baxter equation (CYBE), 

[rl%(0,rl3N(0+rl3
N(m + [ ^ ( 0 , ^ ( 0 ] = 0 , (2.9) 

and it is called the extended Jordanian r-matrix of iV-order. Let N be 
maximal order, i.e. we assume that another elements e±j £ n+, j > N, 
which satisfy the relations (2.3), do not exist. Such element (2.6) is called 
the extended Jordanian r-matrix of maximal order5. 

Consider a maximal subalgebra b'+ £ b+ which co-commutes with the 
maximal extended Jordanian r-matrix (2.6), b'+ := Kei6 € b+: 

£5(x) = [x ® 1 + 1 ® x, retN(£)} = [A(a:), rfliJV(0] = 0 (2.10) 

for Va; e b'+. Let r0 N (£i) e b'+®b'+ is also a extended Jordanian r-matrix 
of the form (2.5) with a maximal root 6\ € h' and maximal order N\. Then 
the sum 

re,N;euNx{£.,£,i) •= re<N{0 +rt)uNl(Z1) (2.11) 

is also a classical r-matrix. 
Further, we consider a maximal subalgebra b" £ b'+ which co-commutes 

with the maximal extended Jordanian r-matrix re N (^) and we construct 
a extended Jordanian r-matrix of maximal order, r02 N (£2). Continuing 
this process as result we obtain a canonical chain of subalgebras 

b + o b'+ D b ' | • • O b(+] (2.12) 

and the resulting r-matrix 

r0,N;...;8k,Nk ( ? » ? ! . • " >?fcj = fe<N r0k,Nk (Cfe). (2.13) 

If the chain (2.12) is maximal, i.e. it is constructed in corresponding with 
the maximal orders N,Ni,...Nk, then the r-matrix (2.13) is called the 
maximal classical r-matrix of Jordanian type for the Lie super algebra g. 

3. Multiparameter twists of Jordanian type 

The twisting two-tensor Fe N(£) corresponding to the r-matrix (2.6) has 
the form 

FeAZ) = FN{t)Fj{*e), (3.1) 

where the two-tensor Fj is the Jordanian twist and J-N is extension of the 
Jordanian twist (see5). These two-tensors are given by the formulas 

Fj(ae)=exp(2he®(7g) , (3.2) 
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?N(0 = ( i l eMt(-1)des(ei)dee(e-i)ei®e-i e-2**"*))-^^) 

/ N' \ 
= e x p ( £ ^ ( - ^ ^ ( ^ O d e g C e - ^ g . 0 e _ . e - 2 t i ( r e j F,(ag), 

(3.3) 

where 

*• / \ fi c e»/2 K>
 e 0 / 2 A I (e<" + 1) <8> (e<" + 1) 

^^^O-^^TI^^TlJV 2(e^e^ + l ) ' (3-4) 

if 0/2 is a root, e2, ,2 = ee, N' = N — 1, and 

•F,fo) = 1 , (3.5) 

if 0/2 is not any root, N' = iV. Moreover 

deg(£) = deg(e0) = deg(e4) + deg(e_i) (mod 2) , (3.6) 

ae:=^ln(l+Cee). (3.7) 

It should be noted that if the root vector ee is odd then ae = \t,eg. 
We can check that the twisting two-tensor (3.1) defined by the formulas 

(3.2)-(3.7) satisfies the cocycle equation 

F1 2(A ® id)(F) = F23(id ® A)(F) (3.8) 

and the "unital" normalization condition 

(e®id)(F) = ( id®c)(f ) = l . (3.9) 

The twisted coproduct A^(-) := F0 N(£)A(- )Fe~x(£) and the corre
sponding antipode Se for elements in (2.3) are given by the formulas 

Ae(e
±<7e) = e±ff« ® e±ffo, A e(e e / 2) = ee/2 ® 1 + e"» ® e0 / 2 , (3.10) 

A/:(he) = he® e~2ar<> + 1 ® hg + jee /2e'CT« ® e 0 / 2 e - 2 ^ 
N' 

-^IZ(" 1 ) d e S e i d e S e " i e i ® e - ' e _ 2 ( t 7 i + 1 ) a 9 ' ( 3-n) 

Ac(ei) = ej ® e-2tiCT« + 1 ® e i ; (3.12) 

Ac(e_i) = e_i ® e2tiff» + e2<T" ® e_i, (3.13) 
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S^'") = e**», 5e(ee / 2) = -ee/2e-'», (3.14) 

1 N' 
Se(he) = -hee

2a» + i ( e 2 ^ - l) - ^ ( - l ) ^ ^ ^ - ^ ^ , (3.15) 
i=l 

5€(e i) = -e i e
2 t ' f f s , S€(e_0 = - e ^ e - 2 ' * ' * 1 ' " ' . (3.16) 

If 0/2 is not any root, the third term in (3.11) and the second term in (3.15) 
should be removed. 

The twisted deformation of U(g) with the new coproduct A^( •) and the 
antipode S^ is denoted by U((g). 

In order to construct the twist corresponding to the r-matrix (2.9) we 
can not apply the second twist Fe N (£i) directly in the form (3.1)-(3.4) 
to the twisted superalgebra U^ (Q) because the deformed coproduct for the 
elements of subalgebra b'+ can be not trivial, i.e. 

At(x) =x<8> 1 + 1 ® a; + something, x G b'+. (3.17) 

However, there exists a similarity automorphism w^ which trivializes (makes 
trivial) the twisted coproduct Ag (•) for elements of the subalgebra b+, i.e. 

A^(w^xw7l) := w^xwT1 <8> 1 + 1 'Siw^xwJ1, x£b'+. (3.18) 

The automorphism w^ is connected with the Hopf "folding" of the two-
tensor (3.3) and it is given by the following formula (see5): 

-P N' 

where ws = exp(\<Je) if 0/2 is a root, and ws = 1 if 9/2 is not any root. 
With the help of the automorphism w% the total twist chain correspond

ing to the r-matrix (2.11) can be presented as follows 

FowuNifoti) = *»! ,*! ( f rW.jvCO , (3-20) 

where 

^ 1 , ^ ( ^ 6 ) : = ( ^ ® ^ ) ^ 1 , ; v 1 ( 6 ) ( ^ 1 ® ^ 1 ) - (3.21) 

Here the two-tensors Fe N{P) and i ^ j v i ^ i ) are given by the formulas of 
type (3.1)-(3.5). 

Iterating the formula (3.21) we obtain the total twist corresponding to 
the r-matrix (2.13): 

Fe,N;ei,Ni;...;6k,Nk{£,(,l, •••,&)= Fek,Nk{€,£l, • • • , 6 f c - i ; f k ) " ' • 
(3.22) 

x^a,wa(e,6;&)Ffll,Ar1K;ei)^»,Ar(0 , 
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where (i — 1 , . . . , k) 

Fei,Ni(€,£i, • • • ,&-i ;&) := (<%_x® <%_x) • • • (™6® w^)(w^<S>w{) 

x FeuNMi)^1® wj1)^1® w^1) • • • (w^ ® wllj . 
(3.23) 

Now we consider specifically the multiparameter twists for the classical 
superalgebras gl(m\n) and osp(l|2n). 

4. Quantum deformation of Jordanian type for gl(m\n) 

Let eij (i,j = 1,2,.. . , m + n) be standard (n + m) x (n + m)-matrices, 
where {eij)ki = bikbji- For such matrices we define a supercommutator as 
follows 

[etj, ekl] := e t few - ( - l )d e g ( e- ) d e g ( e f c , )e f e ; e i j , (4.1) 

where deg(ey) = 0 for i,j < n or i,j > n, and deg(ey) = 0 in another 
cases. It is easy to check that 

[etj, ekl] = 5jkeu - (-l)de^desie*l) 5uekj. (4.2) 

The elements e^ (i,j = 1,2,..., iV := m + ri) with the relations (4.2) are 
generated the Lie superalgebra gl(m\n). 

The maximal r-matrix of Jordanian type for the Lie superalgebra 
gl(m\n) has the form 5 

rl,...,[N/2](£l>--->£[N/2]) = r l ( £ l ) + *-r[N/2](£[N/2])> (4-3) 

where (i = 1,2,...,[N/2]) 

ri(£i) = £i (̂ 2 ( en ~ eW+l-i ,W+l- i ) ^ ei,JV+l-i + 

JV-i (4.4) 

+ Y, ( - l ^ ^ ^ ^ ^ + ^ ^ e i f c A e f e j v + i - i ) • 
k=i+X 

Consider the first twist corresponding to the r-matrix ri(£i) 

FI , JV-2(£I ) = ^ - 2 ( 6 ) ^ 1 ) , (4-5) 

where 

FJ(CT1) = e ( e"- e^" )® f f l , (4.6) 

N-l 

^ - 2 ( 6 ) = e x p ( a ^ ( - l y ^ ^ s ^ e i f e B e f c j v e ^ ' J , (4.7) 
fe=2 
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<T1:=^]nO-+^e1N). (4.8) 

The corresponding automorphism w^ is connected with the Hopf " folding" 
of the two-tensor (4.7) and is given as follows 

fe=2 

It is easy to see that 

w^eijW^1 = eij (4-10) 

for all i, j satisfying the condition 2 < i, j < N — 2, therefore (see the 
formula (3.18)) deformed coproducts A ^ ( •) := F1N_2(£i)A( • )F^N_2{£i) 
for these elements are trivial: 

ASi(ey) =eij®l + l®eij, 2 < i, j<N-l. (4.11) 

This means that the automorphism w^ in the formula (3.21) for the case 
gl(m\n) acts trivially and therefore the total twist corresponding to the 
r-matrix (4.3) is given as follows 

Fl,N-2;2,N-4;...;k,N-2k{€l,&,- • • >£fc) = Fk,N-2k(£fc) ' ' -

(4.12) 
Xi72,JV-4(6)-P1l,JV-2(Cl) , 

where (i = 1 , . . . , [N/2]) 

Fi,N-2i(Hi) = exp Ui NE (-l)d^^A^«»^)eik ® ekN.2i e " 2 ^ ) 
V k=i+l ' 

X exp ((eu - eN_2iN_2i) ® CT4) . 
(4.13) 

5. Quantum deformation of Jordanian type for osp( l |2n) 

In order to obtain compact formulas describing the commutation relations 
for generators of the orthosymplectic superalgebra C(n) ~ osp(l|2n) we use 
embedding of this superalgebra in the general linear superalgebra gl(l|2n). 
Let ctij (i,j = 0, ± 1 , ± 2 , . . . , ±n) be a standard basis of the superalgebra 
gl(l|2n) (see the previous Section 4) with the standard supercommutation 
relations 

[an, akl] = 5jkaa - (-l)**^6**^5aakj, (5.1) 

where deg(ey) = 1 when one index i or j is equal to 0 and another takes any 
value ± l , . . . , ± n ; deg(ey) = 0 in the remaining cases. The superalgebra 
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osp(l|2n) is embedded in g[(l|2n) as a linear envelope of the following 
generators: 
(i) the even (boson) generators spanning the symplectic algebra sp(2n): 

dj := ai-j + sign(ij) aj-i = sign(ij) ejt (i,j = ± 1 , ± 2 , . . . , ±n) ; (5.2) 

(ii) the odd (fermion) generators extending sp(2n) to osp(l\2n): 

e0i := a0_i + sign(i) o i0 = sign(i) e i0 (i = ± 1 , ± 2 , . . . ,±n) . (5.3) 

We also set e00 = 0 and introduce the sign function: sign a: = 1 if a real 
number x > 0 and sign a: = —1 if x < 0. One can check that the elements 
(5.2) and (5.3) satisfy the following relations: 

[eij, eki] = 5j-keu + 5j-i sign(fcZ) eik - 5i-iekj - 5i-k sign(fcZ) ejj,(5.4) 

[e»j, e0fe] = 5j-k sign(fc) ei0 - 5i-ke0j, (5.5) 

{eoi, e0fc} = sign(i) eik (5.6) 

for all i,j,k,l = ± 1 , ± 2 , . . . ,±n , where the bracket {•,•} means anti-
commutator. 

The elements ei • (i, j = 0, ± 1 , ±2) are not linearly independent (we have 
for example, e1_2 = — e_2i) and we can choose from them the Cartan-Weyl 
basis as follows 

rising generators : ei±j,ekk, eok (1 < i < j < n, 1 < k < n); (5.7) 

lowering generators : e±j_», e-k-k, e-ko (1 < i < j < n, 1 < k < n);(5.8) 

Cartan generators : hi := ek-k (1 < k < n). (5-9) 

Maximal classical r-matrix of Jordanian type for the Lie superalgebra 
osp(l|2n) has the form5 

ri,2,...,n (6.^2. • • • . O = *•!&) + r2(Q + ••• + r n ( C ) • (5-10) 

where 

ri (&) := £i (2^-* A e " ~~ 2e0i ®e0i+ Yl ei~k A eik) ' (5-H) 
k=i+l 

The total twist corresponding to the r-matrix (5.10) is given as follows 

^l,n;2,n-l;...;n,l(£>£l> • • • > £n) = -^r1,l(€li €2, • • • , £ n - i ; £ n ) - - ' 
(5.12) 

xF2 ,n_i(6;6)*i,n(£i)-
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Here (i = 1 , . . . , k) 

* i , n + i - i ( 6 . • • •, & - i ; &) := (<%-i® t % - i ) ' • ' w & X ^ i ® w «i ) 
(5.13) 

n-\-\ — i 

Fi,n+i-i^i) = exp (& £ e i_ f c®e f c ,n + i_ ie-2 ' r ' )^(<T<)e e ' - '®' rS (5.14) 
fc=i+l 

where J:
s{ai) is defined by the formula (3.4), and 

^ . = e x p ( e 2 ^ ^ \ Yl ei-fce/c,n+l-i), ^i — 2 l n ( 1 + ^ e i - i ) - (5-15) 
fc=i+l 

6. Light-cone K-deformation of the super-Poincare 
algebra P(3 , l11 ) 

The Poincare algebra V(3,l) of the 4-dimensional space-time is generated 
by 10 elements, Mj, Nj, Pj, PQ (j = 1, 2,3) with the standard commutation 
relations: 

[Mj, Mk] = itjki Mi, [Mj, Nk] = itju Ni, [Nj, Nk] = -iejkl Mt, 

[Mj,Pk}= itjuPi, [Mj,P0] = 0, 

[Nj, Pk) = -%Sjk PQ, [Nj, P0] = -iPj, [PM, P„]=0. 
(6-1) 

The super-Poincare algebra V(3,1|1) is generated by the algebra V(3,1) and 
four real supercharges Qa (a = ± 1 , ±2)) with the commutation relations 

[MJ,Q^] = -{(aj)a0Qf\ 

Wj,Qi±}] = ̂ Wj)a0Qf\ [P^QP] = 0, 
and moreover 

{ Q i ± ) , Q ? ) } = 0, {Q{
a
+\Q{i)} = 2(6al3Po-(Vj)a0Pj), (6.3) 

where we use the denotations Q\ ' :=Q1± iQ2, Q2 '•= Q-\ ± iQ-2-> a n d 
<jj (j = 1,2,3) are 2 x 2 cr-matrices. It should be noted that the spinor 

Q ^ := (Qi , Q2 ) transformes as the left-regular representation and the 
spinor Q(~) := (Q\, Q2~') provides the right-regular one with respect to 
P (3 , l ) . 

Using the commutation relations (6.1) and (6.2), (6.3) it is easy to check 
that the elements iN3, P+ := P0 + P3 , Pi, i(Ni + M2), P2 , i(N2 - Mi), 
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and Qa (a = 1,2) satisfy the relations (2.1)-(2.4), namely, {/i7o,e7o} —> 

{iJV3,-P+}, { e i , e _ i } - { P i . t ^ i + M 2 ) } , { e 2 , e _ 2 } -> { P 2 , 2 ( i V 2 - A ^ ) } , 
e ±3 —> Qi, e±4 —»<32' Therefore the two-tensor 

r = £ ( P j A (JVi + M 2 ) + P 2 A (JV2 - MJ + P + A iV3+ 
x (6-4) 

+2(Q1A<21 + Q2AQ2)J , 
is a classical r -matr ix of Jordanian type. It is called the classical r -matr ix for 

light-cone K-deformation of D = 4 super-Poincare. Specializing the general 

formula (3.3) to our case V(3,1|1) we immediately obtain the twisting two-

tensor corresponding to this r -matr ix 

FK(P(3,1|1) := ^K(Q2)dK(Qi)KCP(3,1)) , (6.5) 

where FK(P(3,1)) is the twisting two-tensor of the light-cone /t-deformation 

of the Poincare algebra V(3,1) 

FK(P(3, l ) ) :=e« PM^+M3)e-2"+ e i P^i^-M^e'2^ e2iiV3®<T+ (6_g) 

and the super-factors $K(Qa) ( a = 1,2) are given by the formula 

(l + e C T
+ ) ^ ( l + e - + ) / 2 Q a Qa \ . , 

^ W J - y 2(l + eCT
+®e-+) V « l + eCT+®l + e

CT+J' ( 6 '7 ) 

The formulas (6.5)-(6.8) were obtained by a suitable contraction of the 
quan tum deformation of Jordanian type 6 . 
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We construct a Bell inequality in terms of correlation functions for three qubits. 
The inequality is violated by quantum mechanics for all pure entangled states 
of 3 qubits. The strength of the violation is stronger than the result given in 
published literature, ref. 1 3 . 

1. Introduction 

By now it is well-known that no local and realistic theory can be compatible 
with all predictions of quantum mechanics 2 by the Bell inequalities. Local 
realism implies experimentally variable constraints on the statistical mea
surement on two or more physically separated systems. These constraints, 
the Bell inequalities, can be violated by the predictions of quantum mechan-
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ics. Thus, Bell inequalities made it possible for the first time to eliminate 
local realistic description of quantum mechanics. Since then, violation of 
Bell inequalities has also become an effective method to detect entangle
ment. 

If Bell inequalities are violated by all pure entangled states, these Bell 
inequalities can be used to characterize entanglement. Characterizing en
tanglement based on Bell inequality is an important issue in quantum in
formation theory. There are several important recent developments in char
acterizing entanglement based on Bell inequalities. In 1991, Gisin 4 demon
strated that every pure entangled state of two qubits violates the CHSH 
inequality. This is Gisin's theorem. One year later, Bell inequalities for N 
qubits were first developed by Mermin-Ardehali-Belinskii-Klyshko (MABK) 
5 _ 7 . However, soon after, Scarani and Gisin 8 noticed that there exist pure 
states of N qubits that do not violate any of the inequalities. These states 
are the generalized Greenberger-Horne-Zeilinger (GHZ) 9 states given by 

W)GBZ = cos£|0 • • • 0) + sin£|l • • • 1), (1.1) 

with 0 < i < 7r/4. The GHZ states 9 are for £ = TT/4. In Ref. 8, Scarani and 
Gisin noticed that for sin 2^ < \/\/2N~l the states (1.1) do not violate the 
MABK inequalities. This observation prompted Scarani and Gisin to write 
that "this analysis suggests that MK (in Ref. 10, MABK) inequalities, and 
more generally the family of Bell's inequalities with two observables per 
qubit, may not be the 'natural' generalizations of the CHSH inequality 
to more than two qubits" 8. Recently, Zukowski n and Werner 12 inde
pendently found the more general correlation-Bell inequalities (the ZB in
equalities) for N qubits. Using the ZB inequalities, Zukowski et al in Ref. 
10 showed that (a) For N =even, although the generalized GHZ states do 
not violate MABK inequalities, they violate the ZB inequalities and (b) 
For N =odd and sin 2^ < l/y/W^ , the generalized GHZ states satisfy all 
known Bell inequalities for correlation functions. Thus it seems that Gisin's 
theorem is invalid for N (odd numbers) qubits. 

In Ref. 13, we developed Bell inequalities in terms of both probabilities 
and correlation functions for three qubits. These inequalities are violated by 
all pure entangled states and hence the return of Gisin's theorem for 3-qubit 
systems. Indeed Bell inequalities are sensitive to the presence of noise and 
above a certain amount of noise the Bell inequalities will cease to be violated 
by a quantum system 14. When noise is present, the considered state is 
described by p = V\ip)(i/j\+(l—V)pno-lse, where /0noise = § for three qubits. 
V is the visibility which is bounded by 0 and 1. For V = 0, no violation of 
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local realism occurs and for V = 1, local realism description does not exist. 
Thus, there exists a quantity Vthr, called the threshold visibility, above 
which the state cannot be described by local realism. It seems that the 
inequalities in Ref. 13 are not good enough to the resistance of noise. For the 
three-qubit GHZ state, the threshold visibility is V$?z = 4-^3/9 = 0.7698 
and for W state, the threshold visibility is V™r = 0.7312. Our recent work 
shows that there is one new Bell inequality for 3 qubits that can be derived 
in terms of correlation functions. We demonstrate that the inequality is 
violated by quantum mechanics for any pure state of three qubits. The 
violation strength of the GHZ state is stronger than that predicted in Ref. 
13. Hence the inequality is more resistant to noise than those given in Ref. 
13 are. 

2. A new Bell Inequality involving Correlation Functions 
for 3 Qubits 

Consider 3 observers, Alice, Bob and Charlie. Suppose they are each al
lowed to choose between two dichotomic observables, parameterized by n\ 
and U2- Each observer can choose independently two arbitrary directions. 
The outcomes of observer X's measurement on the observable defined by 
n\ and n2 are represented by X{h\) and X{fi2) (with X = A,B,C). Each 
outcome can take values +1 or -1 under the assumption of local realism. In 
a specific run of the experiment the correlations between all 3 observers can 
be represented by the product A{hi)B{hj)C{hk), where i,j, k = 1,2. For 
convenience, we write A(hi)B(hj)C(hk) as AiBjCk. In a local realistic the
ory, the three-particle correlation function of the measurements performed 
by the three observers is the average over many runs of the experiment 

QiABjCk) = (Aih^Bih^Cihk)) = (AiBjC). (2.1) 

Similarly, two-particle correlation functions are given as 

QiABj) = (AinJBinj)) = (A^), 

Q(AiCk) = (A{ni)C(nk)) = (AiCk), 

QiBjCk) = (B(nj)C(hk)) = {BjCk), (2.2) 

and one-particle correlation functions are given as 

Q(Ai) = (A(ni)) = (Ai), 

Q(Bj) = (Bihj)) = (Bi), 

Q(Ck) = (C(nk)) = (Ck). (2.3) 
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The following inequality holds for the predetermined results: 

-Q(AiBiCi ) + Q{A2B2d) + Q(AXB2C2) + Q(A2B1C2) - Q(A2B2C2) 

-Q(AiBi ) - Q{A2BX) - Q(AXB2) - Q(Axd) - Q(A2d) - Q(Axd) 

-Q(BiC i ) - Q(B2d) - Q(BiC2) + Q(A2) + Q(B2) + Q(C2) < 3. (2.4) 

The above inequality (2.4) is symmetric under the permutations of Aj,Bj 
and Cj. The proof consists of enumerating all the possible values of 
Ai,Bj,Ck(i,j,k = 1,2). This is easily done by fixing values of A2,B2,C2 

first. By fixing the values of A2, B2 and C2, the inequality (2.4) is shown 
to be always satisfied under a local realistic description in the following. 

1. For the case that A2, B2 and C2 are all plus one, the inequality (2.4) 
becomes 

-A1B1C1 - AiBi - AiCi - Bid - Ax - Bx - d - 1 < 0. (2.5) 

If C\ = 1, we have -2(A\ + l)(Bi + 1) < 0 from inequality (2.5). Because 
Ai and B\ can be either plus one or minus one, — 2{A\ + l ) (S i +1) will be 
—8 or 0. These two values are no larger than 0. If Ci = —1, from inequality 
(2.5) we have 0 < 0, which is obviously satisfied. 

2. For the case that A2 = B2 = 1 and C2 = —1, the inequality (2.4) 
becomes 

-AxBxd - AXBX - AXCX - BiCi - Ai - Bx - C\ - 1 < 0. (2.6) 

The inequality is the same as inequality (2.5). Seen from the first case, 
no matter which values Ax, Bx and C\ take, the inequality (2.6) is always 
correct. Similar conclusions can be drawn for the cases that A2 = C2 = 1 
and B2 = — 1, and B2 = C2 = 1 and A2 = — 1 because the inequality (2.4) 
is symmetric under the permutations of A, B and C. 

3. For the case that A2 — B2 = —1 and C2 = 1, the inequality (2.4) 
becomes 

-AiBiCi - AiBi - Aid - Bid -Ai-Bi + 3Ci-5<0. (2.7) 

If C\ = 1, we have -2(Ai + l)(Bi + l) < 0 from inequality (2.7). Because Ax 

and B\ can be either plus one or minus one, -2(Ai + l)(-Bi + l) will be - 8 or 
0. These two values are no larger than 0. If C\ = —1, from inequality (2.7) 
we have —8 < 0, which is obviously correct whichever values Ax, Bx and 
d take. Similar conclusions can be drawn for the cases that A2 = C2 — — 1 
and B2 = 1, and B2 = C2 = — 1 and A2 = \ because the inequality (2.4) is 
symmetric under the permutations of A, B and C 
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4. For the case that ^2 ,^2 and C2 are all minus one, the inequality 
(2.4) becomes 

-A1B1C1 - A1B1 - AXCX - BxCi + 3Ai + 3£i + 3Ci - 5 < 0. (2.8) 

If C\ = 1, we have —2(A\ — 1)(B\ — 1) < 0 from inequality (2.8). Because 
A\ and B\ can be either plus one or minus one, —2{A\ — 1)(-Bi — 1) will be 
—8 or 0. These two values are no larger than 0. If C\ = — 1, from inequality 
(2.8) we have 4.(A\ + B\ — 2) < 0, which is satisfied because A\, B\ can be 
either plus one or minus one and hence 4(Ai + B\ — 2) will be —16, —8 or 
0. 

Thus, the inequality (2.4) is always satisfied under a local realistic de
scription whichever values At, Bj and Ck take. When setting C\ = 1, C2 = 
—1, the inequality (2.4) reduces directly to an equivalent form of the CHSH 
inequality for two qubits 

Q(A2B2) - Q(A2B1) - Q{AXB2) - QiA^) < 2. 

3. Quantum Violation of the Bell Inequality for 3 Qubits 

Quantum mechanically, the above inequality is violated by all pure en
tangled states of three qubits. To test the quantum violation of any Bell 
inequalities, observables and quantum states are first specified. We con
sider the Bell type experiment in which three spatially separated ob
servers Alice, Bob, and Charlie each measure two noncommuting observ
ables Ai = nai • S{i = 1,2) for Alice, Bj = n^ • a(j = 1,2) for Bob, and 
Cfc = nCk • o(k = 1,2) for Charlie on a quantum entangled state |V>) of three 
qubits. For each set of observables A,, Bj, and Ck, 

f cos0Oi s in0 O i e-*«A 
A , - n o t * - ^ B i n 0 o i e i * o l _ C O S 0 a ; y 

R _ „ -._( cos6bi sin 06, e-**'A 

Cu-ti .ff-( c o s 6ck s i n 9ck e~^Ck \ m ^ 
Ck-nCk " - { ^ ^ _cosQck ) , (3.1) 
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where i, j , k = 1,2, the following correlation functions are resulted, 

QiAiBjCk) = (ip\Ai <g> Bj ® CfclV), 

Q{AiBj) = {ip\Ai ® Bj ® 1|V), 

Q(BjCfe) = (V' | l®B j®C f e |V), 

Q(^tCfc) = (V'lA* (8) 1 ® Cfc|V>, 

Q{Ai) = {i>\Ai® l®l\i>), 

Q(Bj) = (il)\\®Bj®l\il)), 

Q(Ck) = (ip\l®l®Ck\rP). (3.2) 

Pure states of three qubits constitute a five-parameter family, with 
equivalence up to local unitary transformations. This family has the repre
sentation 15 

M = v̂ lOOO) + V^|100) + v^|101) 

+rffi\UO) + rfH\lll), (3.3) 

with [li > 0, ^2i Vi = 1 a n d 0 < 4> < IT. Numerical results show that this 
Bell inequality (2.4) is violated by all pure entangled states of three-qubit 
systems. However, no analytical proof of the conclusion can be given. In 
the following, some special cases will be given to show the inequality (2.4) 
is violated by all pure entangled states. The first example considered is 
the family of generalized GHZ states |V')GHZ = cos£|000) + s in£ | l l l ) . The 
inequality (2.4) is violated by the generalized GHZ states for the whole 
region except £ = 0, ir/2. The variation of the violation with £ is shown in 
Figure 3.1. For the GHZ state with £ = 7r/4, the quantum violation reaches 
its maximum value 4.40367. Another set of states considered are generalized 
W states \ip)w = sin/?cos£|100) + sin/?sin£|010) + cos/?|001). By fixing 
the value of /?, quantum violation of the inequality (2.4) varies with £ (see 
Figure 3.2). The inequality (2.4) is violated by generalized W states except 
the cases with f3 — ^, £ = 0 and £ = f • The states in these cases are 
product states which do not violate any Bell inequality. For the standard 
W state, quantum violation of the inequality (2.4) approaches 4.54086. 

Hence inequality (2.4) is also one candidate to generalize the theorem 
of Gisin to three-qubit systems. One of the interests of the new inequality 
for three qubits is that it is highly resistant to noise. The inequality (2.4) is 
violated by the GHZ state, the threshold visibility is V^z = 0.68125. The 
inequality (2.4) is also violated by the W state, the threshold visibility is 
V^r = 0.660668. We plot the variation of quantum violation for the gener
alized GHZ states with angle £ for inequality given in Ref. 13 and inequal-
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Fig. 3.1. Numerical results for the generalized GHZ states |I/>)GHZ = cos£|000) + 
s i n £ | l l l ) , which violate the inequality (2.4) except 0,7r/2. 
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Fig. 3.2. Numerical results for the generalized W states \ip)w = sin/3 cos £| 100) + 
sin/3sin4|010) + cos/3|001) which violate the inequality (2.4) for different ^ and (3. Here 
the cases j3 = 7r/12,7r/6,7r/4,7r/3, 57r/12 and 7r/2 are considered. 

ity (2.4), see Figure 3.3. In plotting the figure, we rewrite the expressions 
of these two inequalities as 

[ Q(Ai£iCi) - Q(A1B2C2) - Q{A2BlC2) - Q{A2B2d) + 2Q(A2B2C2) 

-Q(-4iBi) - Q(AlB2) - Q(A2B1) - Q{A2B2) + Q{A1C1) + Q(-4iCa) 

+Q{A2C1) + Q{A2C2) + g (BiCi ) + Q(BiC2) + Q(B2Ci) + Q(B2C2)} 

< 1, (3.4) 
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- [ -QiAiBiCi) + Q{AlBlC2) + Q{A1B2Cl) + Q(A2B1C1) 

-Q(A2B2C2) - Q(AxB2) - Q{A2BX) - Q(A2B2) - Q{A,C2) 

-Q(A2Ci) ~ Q{A2C2) - Q(BiC2) - Q(B2d) - Q(B2C2) + Q(A{) 

+Q(B1) + Q ( C i ) ] < l , (3.5) 

respectively. In these forms, the violation degrees of the two inequalities 
can be compared directly. Comparing the results of the inequality given in 
Ref. 13, the new inequality (2.4) is really more resistant to noise. Although 
inequality (2.4) is more resistant to noise than the ones given in 13, the 
visibility of the GHZ state is still not optimal. The visibility of the inequal
ity for three qubits given by Zukouski-Brukner for the GHZ state is 0.5. 
The improvement of this paper is that a Bell inequality involving corral-
tion functions, which is more resistant to noise than the previous ones, is 
constructed. However, there is no inequality which is not only maximally 
violated by the GHZ state, but also violated by all pure entangled states of 
three qubits. To develop such a new Bell inequality for three qubits is still 
an open problem. 

1.50-

Angle t, 

Fig. 3.3. Violation of two Bell inequalities for three qubits with different value of J, 
where curve A is for inequality given in Ref.13 and curve B is for the new inequality 
(2.4). 

4. Conclusion 

We have presented a Bell inequality involving correlation functions for three 
qubits. The inequality is violated by all pure entangled states of 3 qubits, 
although it is not maximally violated by the GHZ state. The visibility of 
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the inequality for the GHZ state is V^z = 0.68125, which is the less than 

tha t ( \ /3 /9) of the inequalities given by us in Ref. 13 . Thus the inequality 

(2.4) is more resistant to noise than the inequalities given before in 13 . 

This work is supported by NUS academic research Grant No. WBS: 

R-144-000-089-112. 
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Topological Aspects of the Spin Hall Effect 

Yong-Shi Wu 

Department of Physics, University of Utah 
Salt Lake City, UT 84112, USA 

I review some recent developments in understanding topological aspects of the 
spin Hall effect, particularly a joint work with X.L. Qi and S.C. Zhang on 
topological quantization of the spin Hall conductivity, as a first Chern number, 
in certain planar insulating systems. I devote this talk to the memory of Prof. 
S.S. Chern for the great, profound and ever-lasting impacts of his mathematics 
on physics. 

1. Introduction to the Spin Hall Effect 

It is well-known that the electron, as an elementary particle, has both charge 
and spin. So the motion of electrons may lead to transport of both charge 
and spin. The study of charge transport has had a long history in classical 
electromagnetism since Volta's invention of the first battery to generate 
electric currents. But the study of spin transport becomes focus of atten
tion only recently because of the surge of the interests in spintronics, which 
requires better understanding how spin can be manipulated in and trans
ported across solid-state devices. 

Compared to charge transport, spin transport has very different sym
metry properties. This is because under rotations charge is a scalar, while 
spin is an axial vector. So charge current density Jj (as a vector) is odd 
under time reversal T, while spin current density J j , as a tensor, is even 
under T. Thus, in the absence of magnetic field, the charge current driven 
by an electric field is longitudinal, obeying the Ohm's law 

JJ=(TCEJ; (1.1) 

so it breaks T-invariance and is dissipative. On the other hand, the spin 
current induced by an electric field is transverse: 

Jj = ^s^ijkEk, (1.2) 
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and it respects T-invariance and is dissipationless. This is the so-called spin 
Hall effect which, if exploited for the purposes of semiconductor spintron-
ics, is believed to have the following advantages: 1) It provides efficient 
generation of spins inside the devices and avoids the usual problem with in
efficient spin injection from outside. 2) It allows information processing with 
no heat dissipation, thus overcoming the increasing heat dissipation prob
lem for ordinary semiconductor devices upon miniaturization. 3) It allows 
using electric fields, instead of magnetic fields, to access and manipulate 
individual spins at nanometer scales. 4) Perhaps it may allow quantum in
formation processing. For these reasons the spin Hall effect becomes a focus 
of current theoretical and experimental efforts in spintronics. 

Theoretically two different mechanisms have been proposed for the spin 
Hall effect. The extrinsic mechanism involves disorder, such as impurities 
and imperfections. It is based on spin-dependent scattering of electrons by 
impurities. The intrinsic mechanism is independent of disorder, giving rise 
to dissipationless spin current in a perfect crystal. Below I will present a 
brief review of the topological aspects of these mechanisms, particularly of 
a joint work of mine with Qi and Zhang1 on quantization of the spin Hall 
conductivity, as the first Chern number, in 2D insulating systems. 

A historic remark seems appropriate here, as the present conference 
is devoted to the memory of Prof. S.S. Chern for the great impacts of 
his mathematics in physics. The recent resurgence of interests in the spin 
Hall effect2'3 was partly due to the theoretical discovery2 of the intrinsic 
dissipationless spin Hall current (1.2) as the dimensional reduction of a non-
abelian Hall current in 4D disc when restricted to the 3D edge. The study 
of the 4D quantum Hall effect had originated from considerations of the 
second Hopf bundle that carries a non-trivial second Chern number4. This 
relationship was enough to motivate me to study the topological aspects of 
the spin Hall effect, including quantization of the spin Hall conductivity. 

2. Spin-Orbit Coupling and Berry Curvature in k-Space 

The spin Hall effect happens due to spin-dependent response of electrons 
to an external electric field. However, an electric field couples directly to 
charge, not to spin. How can electrons with different spin orientations re
spond differently? The answer is through the spin-orbit (SO) coupling, 
which makes the motion of the electron depend on its spin orientation. 

In quantum mechanics the SO coupling is known due to a relativistic 
effect: In the rest frame of the electron, its spin magnetic moment couples to 
a (momentum dependent) magnetic field, which originates from the electric 
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field in the lab frame. In a real sample, either atomic, crystalline, impurity 
or even gate electric fields can give rise to SO coupling. The magnitude of 
the SO coupling for free electrons in a solid state sample, compared with 
that in vacuum, can be greatly enhanced. The study of the SO coupling is at 
the heart of the study of electric-field driven spin transport, and especially 
of the spin Hall effect in solid state devices. Depending on the symmetries, 
two typical SO Hamiltonians for electrons in 3D crystals are the Rashba 
term and the Dresselhaus term. The effects of SO coupling on spin transport 
critically depend on the form of the SO coupling. For a recent brief review 
on SO coupling and spin transport, see ref. 5. 

In addition to giving rise to spin-dependent scattering of an electron 
against impurities, SO coupling also modifies the Berry curvature in k-
space. For simplicity, we consider a non-interacting electron system on a 
2D lattice. In the absence of SO coupling, the energy eigenstates of an 
electron are labeled by quasi-momentum k and the band index n. We denote 
by wnk(x) the periodic part of the Bloch wave function. Then the Berry 
connection (or vector potential) in k-space is defined to be 

Ani(k) = H ) < nk| A | n k > = (_;) J d 2 x u * n k ^ . (2.1) 

The corresponding curvature (or field strength) is B„(k) = Vk x A„(k). 
In the presence of SO coupling, B„(k) becomes spin-dependent. 

It is this Berry curvature in k-space that plays a fundamental role in 
studying topological aspects of planar electron systems. In particular, the 
first Chern number of the Berry curvature normally gives a topological 
number that characterizes a completely filled band6 '7. In addition, B„(k) 
also plays a role in dynamics by modifying the semi-classical trajectory of 
the electron as a wave packet. The semi-classical equations of motion in 
phase space for a wave packet of the Bloch electron in the presence of an 
external electric field are given by8 

frk 
hk = eE, x = kxB(k). (2.2) 

m 
Here x and k are the central position of the wave packet in coordinate 
and momentum space, respectively. The last term in the right-hand side of 
the second equation is nothing but the anomalous velocity first found by 
Karplus and Luttinger9 half century ago, now identified as being induced 
by the Berry curvature in k-space. With SO coupling, the spin-dependent 
anomalous velocity, which for narrow-band semiconductors induces a drift 
that is both perpendicular to spin vector and to the electric field (the "side-
jump" effect10). 
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3. Extrinsic Spin Hall Effect and Anomalous Hall Effect 

The SO coupling arising from impurity electric fields leads to the so-called 
extrinsic spin Hall effect. When an electron is scattered by an impurity, SO 
coupling induces a spin-dependent amplitude, which is known as the skew 
Mott scattering11. This amplitude, giving rise to different scattering angles 
for spin-up and spin-down electrons, will make a contribution to the spin 
Hall current10. Moreover, as we saw in last section, the band structure of 
Bloch electrons also induces a Berry curvature in k-space, which together 
with the impurity electric field gives rise to a spin-dependent side-jump 
effect for the wave-packet trajectory in x-space. The latter will contribute 
to the spin Hall conductivity too10. 

The estimation of the magnitude of the extrinsic spin Hall effect, which 
is material and sample dependent, is crucial to interpreting experimental 
observations of spin accumulation in real samples. It is a very delicate job, 
which unfortunately I do not have time to address any more in this talk. 

A close cousin of the spin Hall effect is the anomalous (charge) Hall 
effect. Usually the (charge) Hall effect occurs in an applied magnetic field. 
However, in magnetic systems (with broken T-symmetry) or in systems 
with SO coupling, the anomalous (charge) Hall effect may happen in the 
absence of an external magnetic field. Theoretically, depending on whether 
the underlying mechanism involves disorders or not, the anomalous Hall 
effect is said to be extrinsic or intrinsic. In the cases with SO coupling, 
one may consider two spin species of electrons with spin fully aligned along 
^-direction; then the spin current, J1-, is related to the anomalous Hall 
current of each species, jj'^, by 

JJ = e - 1 ( j t _ j j ) . (3.!) 

This relation applies both to extrinsic and intrinsic contributions. 
In the following I will report on a recent joint work1 with Qi and Zhang 

on the impurity independent or intrinsic anomalous Hall and spin Hall ef
fects in planar insulating systems, especially on our suggestion of topological 
quantization of the anomalous Hall conductivity and spin Hall conductivity. 

4. Quantized Anomalous Hall Effect (QAHE) 

In ref. 1 we proposed a model for a wide class of 2D magnetic semiconduc
tors, whose ground state is a bulk magnetic insulator (with the Fermi level 
lying in the band gap) with gapless edge states responsible for the transport 
with quantized Hall conductivity. The most general two-band Hamiltonian 
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describing a 2D system with SO coupling and magnetic moment is of the 
form: (a = 1,2,3) 

H(k)=e(k) + Vda(k)aa. (4.1) 

where aa are Pauli matrices and k = (kx, ky) Bloch wavevector. Parity (or 
time reversal) is broken if one of the dQ(k)'s is odd (or even) in k. The 
two-band spectrum is given by E±(k) = e(k) ± Vd(k), where d(k) is the 
norm of the 3-vector da. When the coupling constant V is large enough, the 
two bands with energies .E±(k) will be separated by a full gap. In this case, 
when the chemical potential lies in the gap, the system is a bulk insulator 
with the lower band completely filled and the upper band empty. Using 
Kubo's formula the charge Hall conductivity is shown to be 

~to2J JF 
d2k d • d{ x <9jd, (4.2) 

FBZ 

where d is the unit vector in the direction of da. This is known to be the 
winding number of the map from the first Brillioun zone (FBZ) to the 2-
sphere, da(k) : FBZ —> 5 2 . So it is a topological invariant, independent of 
the details of the band structure parameters provided the band gap does 
not close; and the value of o"y is always quantized: axy = —n/2n when the 
map da(k) covers S2 n times. Although the single-electron states in this 
system are very different from those in the Landau levels in the usual integer 
quantum Hall effect (IQHE), the quantization of Hall conductivity in the 
two systems shares the same topological origin, as the first Chern number 
of Berry curvature in k-space. Our formula (4.2) for the QAHE generalizes 
the TKNN formula6 for the IQHE to the cases without a magnetic field. 

For an explicit discussion on the QAHE and on the characters of asso
ciated edge states, as an example we choose: dx = sinfcy, dy = — sinfcx and 
dz = c (2 — cos kx — cos ky — es), and consider the tight-binding model on a 
square lattice, which describes a magnetic semiconductor with SO coupling 
and uniform magnetization, with the k-space Hamiltonian of the form (4.1): 

H = - t ^ [C\CJ + h.c.j + — ^2 (4ayci+& ~ 4axCi+y - /i.e.) 
w> i 

cV 

(ij) 

~ 53 fa'cj + h.c) + (2 - es)VcJ24<7z*- (4-3) 
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-0.5 0 0.5 
k (in unit of 2%) 

Fig. 4.1. Energy spectrum of the system (4.3) on a cylinder, with parameters c = 
1, t/V = 1/3, es = 0.5. The solid and dashed lines between two bands are the edge states 
on the right and left edge, respectively. Inset: the density distribution of the two edge 
states at the Fermi surface, calculated for a 50 X 50 lattice. 

When V/t is large enough and c > 0, the Hall conductivity is shown to be 

{ 1/27T, 0 < es < 2 

-1/27T, 2 < es < 4 (4.4) 
0, es > 4 or es < 0. 

Thus, the bulk topological number for the first two cases is n = ± 1 . 
To show the behavior of edge states, put this system on a strip with 

periodic boundary condition in y-direction and open boundary condition 
in rr-direction (with the wave function vanishing at x = 0,L + 1). In this 
case ky is a good quantum number and the single-particle energy spectrum 
can be obtained as Em(ky), m = 1,.., 2L. The energy spectrum is shown in 
Fig. 4.1. For a given ky, there are 2L states, two of them being localized 
and the rest extended. When the Fermi level, represented by the horizontal 
dotted line, lies in the bulk energy gap the only gapless excitations are edge 
states (marked by the arrows). Similar to the usual IQHE case, the edge 
states have definite chirality. In the present case, all the left-edge states 
move with velocity vy < 0 and all the right ones with vy > 0, as seen from 
their dispersion relation. Generally, when axy — n/2ir, there are \n\ edge 
states on each edge, where the charge current is right-handed for n > 0 and 
left-handed for n < 0. We leave the discussion of the relation between edge 
states and bulk transport to next section. 



468 Y.-S. Wu 

5. Quantized Spin Hall Effect in Paramagnetic Insulators 

The QAHE of a magnetic semiconductor discussed above can be generalized 
to the quantum Hall spin effect (QSHE) in paramagnetic semiconductors. 
We start with the spin Hall insulator model discussed in ref. 12, and spe
cialize it to 2D. The Luttinger model describing the spin S = 3/2 heavy 
and light hole bands can be expressed as 

H(k) = e(k) + Vda(k)Ta , (5.1) 

where Ta (a = 1,2,..,5) are the five Dirac T-matrices forming an 50(5) 
Clifford algebra. In the continuum limit, <ia(k) are the five rf-wave combi
nations of k. If there is a mirror symmetry: z <-> —z, we can consistently 
set (kz) = 0 and (fcf) = es. In this quasi-2D case di = di = 0, and Ta 

(a = 3,4, 5) form a representation of an SO(3) Clifford sub-algebra. The 
Hamiltonian (5.1) preserves T-invariance. Its energy spectrum is exactly the 
same as that of (4.1), but with each energy level now doubly degenerate 
due to the Kramers theorem. 

Suppose that V is large enough so that a full gap is open between the 
two energy bands. With the Fermi level in the gap the system is in an 
insulating phase; by using Kubo's formula, the spin Hall conductivity a% 
for the conserved spin current defined in ref. 13 can be written as 

^ c ) = ^ / / F B Z ^ d - 9 x d x 9 y d . (5.2) 

So the conserved spin Hall conductivity in the quasi-2D systems (5.1) is 
always quantized in units of 1/27T, and its value, as a topological invariant, 
gives a characterization of the topological order in the insulating phase. 
The topological quantization of the spin Hall conductivity in this model is 
easy to understand: The present spin-3/2 Hamiltonian (5.1) is essentially 
two decoupled copies of the previous QAHE Hamiltonian (4.1), with da(k) 
to be opposite in the two copies. Each copy is labeled by the eigenvalue 
±1 of Ti2, which commutes with Ta and the Hamiltonian and thus serves 
as a "conserved spin quantum number" even in the presence of the SO 
coupling. The spin Hall conductivity of the system is the difference between 
the anomalous Hall conductivity for each copy. 

For a numerical example, we choose da(k) to be 

dz{k) = — V3 sin kx sin ky 

di{k) = V3(coskx —cosky) 

d5(k) =2-es-cos kx-cos ky, (5.3) 
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(b) 

N 

k (in unit of 2JI) 

y 

Fig. 5.1. (a) The energy spectrum for the Hamiltonian (5.3) with t/V = 4 and e s = 0.5. 
The mid-gap solid (dashed) lines stand for the doubly-degenerate edge states, and the 
dotted line a typical in-gap Fermi level with fj, — —4.2t. Each crossing of the edge spectral 
curve with the Fermi level defines two edge states on the left and right boundary with 
opposite value of F 1 2 . The solid (hollow) circles mark the particle (hole) edge excitations 
induced by adiabatic flux turning-on. (b) Schematic picture of edge states. Each red 
(blue) line stands for two edge states with T1 2 = +1(—1). The double arrow shows the 
direction of current, carried by the edge state, induced by an electric field in ^-direction. 

which reduces to the continuum Luttinger model when kx, ky 

calculations show that 

Tz(c) 
xy 

0 < es < 4 
> 4 or es < 0. 

0. Direct 

(5.4) 

Here the non-zero topological charge is 2, as twice bigger as in the previous 
case (4.4). 

To see how spin is transported, again we put the system on a cylinder 
(periodic in y-direction). Then we follow a Laughlin-type gauge argument14, 
adiabatically turning on a magnetic flux threading the cylinder and keeping 
track of the evolution of the edge states near the open boundaries in the 
infinitesimal electric field. 

At zero flux there are four edge states on each open boundary. For the 
states with T12 = +1(—1), the vy > 0 state is localized on the left (right) 
edge, while the vy < 0 state is localized on the right (left) edge. The energy 
spectrum and the chirality of the edge states are shown in Fig. 5.1 (b). 

When the Fermi level lies in the bulk energy gap, the insulating ground 
state (Fermi sea) consists of filled bulk and edge states \mky) below the 
Fermi energy. Now let the flux $(£) threading the cylinder changes adia
batically from $(0) = 0 to $(T) = 2TT. The effect of flux threading is to 
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replace ky —> ky — Ay in the Hamiltonian (or to impose twisted boundary 
conditions7), which transforms each single-particle eigenstate umk {x)eikyV 

into um,ky-Av{x)^kv~Av^y• Namely, the states in the Fermi sea get trans
lated in momentum space. The bulk states remain in bulk, while each edge 
state on the Fermi surface with velocity vy > 0 will move out of the Fermi 
sea and becomes a particle excitation, since SE ~ vySk = 2~Kvy/L > 0, and 
each edge state with vy < 0 will move into the Fermi sea and leads to a 
hole excitation, as shown in Fig. 5.1 (a) by solid and hollow circles near 
the Fermi surface. So when the flux reaches 2n, the adiabatic evolution will 
result in 

\m,ky) m,ky + — ) . (5.5) 

And the the net effect is to transfer the edge states with T12 = 1 from the 
right edge to the left edge and to transfer the edge states with T12 = — 1 in 
the opposite way. (The above analysis is a generalization of that in ref. 15 
from the usual IQHE to QSHE.) 

This leads to an accumulation of the T12-spin on the boundaries, which 
in turn leads to a non-vanishing spin Sz density on the boundary, since 
T12 is related to Sz by Sz = -%T12 - T34. On the other hand, such an 
accumulation can also be considered as a consequence of the spin Hall 
current j z induced by the electric field Ey. So the physically observed spin 
Hall conductivity is proportional to the amplitude of spin accumulation 
after 27r-flux threading. Though spin Hall conductivity consists of conserved 
and non-conserved parts, only the conserved part cr(c) corresponds to a 
transport of T12-spin carried by the motion of edge states, while the non-
conserved part <j(nc) is just a precession effect due to the non-conserved 
nature of spin as represented by (T34) for each edge state. Consequently, it is 
only a^ that counts genuine transport of quantum states in the system and 
is protected by the bulk topological order. These considerations constitute 
a physical justification of the conserved spin current operator defined in 
ref. 13. 

6. S u m m a r y 

Both the anomalous (charge) Hall effect and the spin Hall effect rely on 
the interplay between SO coupling and the Berry curvature in k-space. 
The latter accommodates intriguing topological aspects of quantum many-
body theory, such as characterization of topological orders in insulators in 
terms of quantized charge and spin Hall conductivity, as well as holographic 
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relation between bulk transport and edge states. 
The QSHE models discussed in this paper can be experimentally realized 

in two classes of 2D semiconductors. One class is the (distorted) zero-gap 
semiconductors such as HgTe, HgSe, /?-HgS and a-Sn. The other class is the 
narrow-gap semiconductors such as PbTe, PbSe and PbS. The quantized 
spin Hall effect is expected1 to be observable in a wide temperature range, 
say T « 100-ftT. Also it is predicted1 that when the Fermi level changes in 
a ballistic regime, the quantum spin Hall insulator (5.3) should exhibit a 
plateau of residue longitudinal charge conductance G = 8e2/h, due to the 
existence of 8 edge states as demanded by topological arguments. 

In this talk, I did not address the effects of randomness and interactions 
in spin transport, critical for explaining experimental data. The study of 
random systems with SO coupling is still in its infancy. How to incorporate 
interactions is not clear either. Much work remains to be done. 
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In this talk, we review the positive mass theorems in general relativity as well 
as discuss recent progress to their generalization for spaces with asymptotic 
Calabi-Yau compactification in string theory. 

1. Introduction 

In general relativity, our universe is modelled by a 4-dimensional Lorentzian 
manifold (Nl,3,'g) together with an energy-momentum tensor T which sat
isfies the Einstein field equations 

Ric(g)-^p-g = T. (1.1) 

Usually, a triple (M3,gij,hij) is served as a Cauchy surface on the initial 
problem of the Einstein equations. Here M3 is a 3-dimensional spacelike 
hypersurface with induced Riemannian metric g^ and hij is a symmetric 
2-tensor (e.g. the second fundamental form of M in JV). 

It is difficult to globally define the total energy, total linear momentum, 
and total angular momentum in general relativity. However, these basic 
quantities are well-studied for asymptotically flat initial data sets. Physi
cists believe, with some justification, that the total mass for a nontrivial 
isolated gravitational system must be positive. This was the famous posi
tive mass conjecture which was first proved by Schoen and Yau in a series 
of papers11^13 using minimal surface techniques and then by Witten14 '10 

using spinors. 

mailto:nqxie@fudan.edu.cn
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2. Positive Mass Theorems in General Relativity 

Recall that an initial data set (M3,gij,hij) is said to be asymptotically flat 
if there is a compact set K in M such that the end M — K is diffeomorphic 
to R3 — BR(0) where BR(0) is the ball of radius R with center at the origin. 
Under this diffeomorphism, the metric on the end M — K is of the form 

9ij = 6ij + 0(r~T), dk9ij = OCr- 1- 1) , dkdi9ij = 0 ( r - T ~ 2 ) . (2.1) 

Furthermore, the second fundamental form fty satisfies 

hi, = 0{r-T-1), dkhij = 0(r~T-2) (2.2) 

for the asymptotic order r > \. 
For this space, the total mass and the total linear momentum are defined 

as follows1: 

E = lim — - / (djgij - digjj) * dxu (2.3) 
R-*oo 1077 JsR 

Pk= lim —- / (hki - Skihjj) * dxi, (2.4) 

where SR denotes the sphere of radius R. 
When the asymptotic order r > | , these quantities are finite and inde

pendent of the asymptotic coordinates2,5. 
The positive mass theorem states 

Theorem 2.1. (Schoen-Yau1 1 - 1 3; Witten1 4 , 1 0) With the assumptions 
above and assuming that M satisfies the following dominant energy condi
tion 

T00 > |Ta / 3 | , T°° > {-T0iT
0i)i, (2.5) 

then one has 

£ - | P | > 0 . (2.6) 

Moreover, if E — 0, then N is flat along M. 

In Ref. 17, Yau asked what a good definition of total angular momentum 
and what the relationship would be with the total mass. Zhang answered 
this question in Ref. 18. The main idea is as follows. First, we define the 
local angular momentum density hfj with respect to a point z € M by 

Kj = Ur(VuP
2

z)(hv} - gvjtrg(h)) (2.7) 
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where p is the distance function of M with respect to z and ê fe are the 
components of the volume element. Note that this 2-tensor hfj is not sym
metric in general. Then, the total angular momentum with respect to the 
point z is defined18 by 

Jk(z) = lim ±- [ hz
ki*dxi. (2.8) 

R^oo 87T JSR 

(Here we need some 'regular' conditions in Ref. 18.) Zhang also proved a 
new positive mass theorem associated with nonsymmetric initial data p^. 
Denote 

A* = ^ + ( E P « ) 2 - E 4 ) » (2-9) 
hj 

"j = E(V«ft '* " VJPH)> (2-10) 
i 

Xj=2j2vi(pij-pji), (2.11) 
i 

where R is the scalar curvature of M. The total momentum is defined as 
the same as in (2.4) except to replace hij by pij. 

Theorem 2.2. (Zhang18) Let (M, 
9ijiPij) be a 3-dimensional almost 

asymptotically flat initial data set. If M satisfies the dominant energy con
dition 

y. > max{ / ! > * ' .[Efa+Xj)2}, (2-12) 

then one has 

E-\P\>0. (2.13) 

If E = 0 and gtj is C2, Pij is C1, then the following equations hold on M: 

Rijki+PikPji-PuPjk = 0, ViPjk-VjPik = 0, ^Vi{pij~Pji) = 0. (2.14) 
i 

Finally, by taking p^ = hfj and p^ = h^ ± ft?, to a regular point z in 
Theorem 2.2, we obtain the positive mass theorems involving the total 
angular momentum. This theorem is also extended to higher dimensional 
spin asymptotically flat initial data sets18. 

We refer to Ref. 19 for an extensive and detailed survey of positive mass 
theorems in general relativity. 
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3. Calabi-Yau Compactification and New Positive Mass 
Theorems 

According to string theory4, our universe is really 10-dimensional, modelled 
on M1'3 x X where X is a Calabi-Yau 3-fold. This is the so-called Calabi-Yau 
compactification. The spatial slices of such spacetime then asymptotically 
approach the product of the flat Euclidean space with a compact Calabi-
Yau manifold. Hertog-Horowitz-Maeda constructed classical configuration 
which has regions of negative energy density as seen from four dimensional 
perspective9. Physically, the negative energy density leads to the possible 
violation of Cosmic Censorship and new thermal instability. This guides us 
to revisit the concept of the mass in string theory. 

We consider the complete Riemannian manifold (M, g) such that M = 
M0UMoo with M0 compact and M ^ ~ (Rk-BR(0)) xX for some R > 0 and 
X a compact simply connected Calabi-Yau manifold. We will call {M,g) 
a space with asymptotic Calabi-Yau compactification if the metric on the 
end MQQ satisfies the following asymptotic conditions 

g = g + h, g = gRk+gx, (3.1) 

h = 0(r-T), V/i = 0{r~T-1), W h = 0(r~T-2). (3.2) 

Here V is the Levi-Civita connection with respect to g, r > ^ ^ (k > 3) is 
the asymptotic order, and r is the Euclidean distance to a base point. 

For such a space (M,g), the total mass is defined6 as 

E= lim —— / (digij-djgaa)*dxjdvol(X)> (3.3) 
fl—oo 4u)kVOl{X) JsRxX 

where the * operator is the one on the Euclidean factor, the index i,j run 
over the Euclidean factor while the index a runs over the full index of the 
manifold. 

A positive mass theorem for such a space was established by Dai re
cently. 

Theorem 3.1. (Dai6) Let (M,g) be a complete spin manifold as above. If 
M has nonnegative scalar curvature, then E > 0 and E = 0 if and only if 
M = Rk x X. 

The above positive mass theorem is applied to the study of stability 
of Ricci flat manifolds8. And the Lorentzian version of this theorem was 
discussed in Ref. 7. 
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Motivated by the study of total angular momentum in general 
relativity18, we generalize Dai's positive mass theorem to an initial data 
set with nonsymmetric pab- Let (M,g) be as above and assume further that 
on the end M ^ the nonsymmetric 2-tensor p satisfies 

P0a = P/3i =Pi0 = O (3.4) 

and 

p = 0(r-T-1), Vp = 0(r-T-2). (3.5) 

Here the index a, (3 run over the compact factor while the index i runs over 
Euclidean part. 

We also define the total momentum as 

Pk = lim yprrr I 2(pkj - SkjPu) * dxjdvol{X). (3.6) 
fl-oo 4wkVOl{X) JsRxX 

Again, the * operator is the one on the Euclidean factor, and the index 
i,j,k run over the Euclidean factor. 

We say that (M,g,p) satisfies the dominant energy condition if 

ti>max{ / $ > „ ) * , / $ > « + Xa)2} + J E "»• (3-7) 
V a y a Y l < a < n - 3 

Here, local energy density is defined as 

M=5( f l+ (EP- ) 2 -EPa6) (3-8) 
o, a,b 

where R is the scalar curvature, and local momentum densities are defined 
as 

Ua = ^(VbPab - VaPbb), (3.9) 
b 

Xa = 2^2VbPba, (3 .10) 
b 

Kl= E (PabPcd+PacPdb+PadPbc)2, (3 .11) 
b,c,d;c>d>b>a 

where pab =Pab~Pba-
The generalized positive mass theorem associated with nonsymmetric 

initial data pab for spaces with asymptotic Calabi-Yau compactification is 
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Theorem 3.2. (Xie16) Let (M,g,p) be a complete spin manifold as above. 
If (M,g,p) satisfies the dominant energy condition (3.7), then one has 

E-\P\>0. (3.12) 

Our argument is also of Witten-type adapting the methods in Ref. 18 and 
Ref. 6, 7. The main idea is to use the modified Dirac-Witten operators in 
Ref. 18 and then our positive mass theorem is a consequence of two nice 
generalized Weitzenbock formulae. 

4. Some Remarks 

We remark that both Theorem 3.1 and Theorem 3.2 can be extended 
to spaces asymptotically approach the product of a flat Euclidean space 
with a compact simply connected manifold which admits a nonzero parallel 
spinors. 

However, Witten observed that the positive mass theorems do not ex
tend immediately to Kaluza-Klein theory15. The analytically continued 
Reissner-Nordstrom metric, explicitly constructed in Ref. 3, is a negative 
energy solution. The reason here might be that the end K 3 x 5 ' , and espe
cially S1, has the wrong spin structure. The reader is referred to Sec. 5 in 
Ref. 6 for additional discussions regarding the spin structures. 

Finally, we should mention that the present short article is only a very 
restricted and compressed version of the talk and its references (in partic
ular to physical discussions) are far from complete. We apologize to the 
authors of relevant papers which we have not cited and the reader can find 
out more elaborate treatments in the original articles. 
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1. Introduction 

In mirror symmetry, it is expected that the analytic torsion of a Calabi-Yau 
threefold X provides an invariant F\(X). Following [2] and [9], we give a 
mathematical definition of F\{X), which we obtain using analytic torsion 
and a Bott-Chern secondary class. (See Sec. 2.) We write TBCOV(X) for 
F\(X) and we call it the BCOV invariant of X. Then TBCOV gives rise to 
a function on the moduli space of Calabi-Yau threefolds. 

In [1], [2], Bershadsky-Cecotti-Ooguri-Vafa used mirror symmetry to 
study the function TBCOV on the moduli space of quintic mirror threefolds. 
They gave a conjectural expression of TBCOV as a generating function of the 
genus-one Gromov-Witten invariants of a general quintic hypersurface of 
P 4 . (See Sec. 3.) In [9], we gave an explicit formula for TBCOV as a function 
on the moduli space of quintic mirror threefolds, which reduces the BCOV 
conjecture to a problem of symplectic geometry. (See Sec. 4.) 

For a class of Calabi-Yau threefolds introduced by Borcea [6] and Voisin 
[17], Harvey-Moore studied the function TBCOV on their moduli space. In 
[11], Harvey-Moore conjectured that TBCOV is expressed as the norm of 
the denominator function of some generalized Kac-Moody superalgebra in 
these cases. In [22], we shall prove the Harvey-Moore conjecture for certain 
Calabi-Yau threefolds of Borcea-Voisin type. (See Sec. 5.) 

In this article, we report a recent progress in the BCOV conjecture and 
the Harvey-Moore conjecture obtained in [9] and [22]. The results stated 
in Sees. 2 and 4 are based on the joint work with Hao Fang and Zhiqin Lu. 

* partially supported by the Grants-in-Aid for Scientific Research for Young Scientists 
(B) 16740030, JSPS 
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2. Calabi-Yau threefold and the BCOV invariant 

Let X = (X, g) be a compact Kahler manifold with Kahler form 7. Let DPi9 

be the Laplacian of X acting on (p, g)-forms on X, and let £p,g(s) be the 
spectral zeta function of 0PtQ. After Ray-Singer [16], Bismut-Gillet-Soule 
[4], and Bershadsky-Cecotti-Ooguri-Vafa [2], we make the following 

Definition 2.1. The BCOV torsion of X is defined as 

TBCOV(X) : = e x p [ - £ ( - 1 ) P + 9 P < , 9 ( 0 ) ] . 

Recall that a smooth, irreducible, compact Kahler n-fold X with canon
ical line bundle Kx is Calabi-Yau if the following hold: 

(1) Kx = Ox, (2) H"(X,Ox)=0 (0<q<n). 

Assume that X is a Calabi-Yau n-fold. Let Vo\(X) be the volume of X. 
Let Ci(X) be the i-tb. Chern form of (TX, g). Then x P O = Jx cn(X) is the 
Euler number of X. Let 77 be a nowhere vanishing holomorphic n-form on 
X, whose L2-norm is denoted by | |T7|||2. Define 

' ( v ^ r ' n A f ? Vol (Z) \ Cn(X)' 
A(X) : = V o l ( X ) 2 ^ e x p 

f / ( y ^ I ) " n A 7 7 Vol(X) \ 

Jx § V TM. ' Ml, ) 12 

By Hodge theory, H2(X, R) is equipped with the L2-metric with re
spect to the Kahler class [7]. Set H2{X,Z)ir := H2(X, Z)/Torsion. Define 
VolL2(H2{X,Z)) as the volume of the real torus H2{X, R)/H2(X, Z)fr. 

Definition 2.2. When dimX = 3, define the BCOV invariant of X as 

A(X)TBCov(X) 
V ' Vol(X)3VolL 2(F2(x,Z)) 

By the curvature formula for Quillen metrics [4], we have (cf. [9]) 

Theorem 2.1. When dimX = 3, TBCOV(-?0 *S independent of the choice 
of a Kahler metric on X. In particular, T-QCOV{X) is an invariant of X. 

When Calabi-Yau threefolds X and X' are birationally equivalent, their 
Hodge numbers coincide, i.e., hp'q(X) = hp'q(X') for p, q > 0. As an ana
logue, we make the following 

Conjecture 2.1. / / Calabi-Yau threefolds X and X' are birationally equiv
alent, then 

TBCOV(X) = T B C O V P O -
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3. Mirror Symmetry and the BCOV conjecture 

Let p: X = {([«], V) G P 4 x P1; F^(z) = 0} 3 ([z],i/>) -> V G P 1 be the 
pencil of quintic hypersurfaces of P 4 defined by the equation 

Fi/,(z) := z% + z\ + z\ + z\ + z\ - 5ip Z0Z1Z2Z3Z4, 

where tp is the inhomogeneous coordinate of P 1 . Set X$ := p~x{ip) for 
ip G P 1 . Then X^ is a Calabi-Yau threefold when ip5 ^ l,oo. Let Q$ be 
the holomorphic 3-form on X^ defined as 

/ 2-rri \ ~ dzo A dz\ A dz^ 

^:={-T) ^ dF+{z)/az3 • 

Set yo(V') : = E^Li (n!)
(55(5 )̂5n for |V>| » 1. Define the Yukawa coupling by 

(A. A JL\ — f 
B \d^ dip' dtp J ' Jx^ 

n^ _d*_ / Cl^ \ _ / 2 T T A 3 5ip2 1 

KA 

yo(ip) dtp3 \yo(ip)J \ 5 / l-ip5 y0{ip)2' 

Let i} be the complex upper half-plane. For t £ fi, let q := e27™* be 
the parameter of the unit disc of C. Let Ng(d) be the degree-d, genus-<? 
Gromov-Witten invariant of a general quintic threefold of P 4 . Define the 
quantum cup-product by 

d d d\ r ^ A r . . . d3qd 

The mirror map is the identification of ip5 and q defined as 

The following identity was conjectured by Candelas-de la Ossa-Green-
Parkes [8], and it was proved by Givental [10], Lian-Liu-Yau [14]. 

Theorem 3 .1 . Under the identification (3.1), the following identity holds: 

(d d d\ _ ( . dip\3 (_d_ d d 
KA\dt'di'dt)~{2mqdq) KB{diP'drdiP 

Bershadsky-Cecotti-Ooguri-Vafa extended the mirror symmetry con
jecture to the genus-one Gromov-Witten invariants {N\(d)}d>i as follows. 

Let Z5 = {C G C; C5 = 1}; which is a cyclic group of order 5. Set 
G := {[diag(ao,ai,02,03,04)] G PSL(C5); a* € Z5}, which acts fiberwise 
on X. We have the induced family p: X/G —> P 1 , whose general fiber is a 
Calabi-Yau orbifold X*/G. Set V* = Z5 C C and V = V* U {00}. 
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Definition 3.1. Let / : W —* XjG be a resolution of the singularities of 
XjG, and set IT :— p o / . Then n: W —> P 1 is called a family of quintic 
mirror threefolds if the following hold: 
(1) For all ip G P 1 \ V, the map of fibers fo-.W^, = n'1^) -> X^ /G 
induced by / is a resolution such that Kw^ — Ow^,', 
(2) Sing W ,̂ consists of a unique ordinary double point if ip G V*. 

By [15], there exists a family of quintic mirror threefolds. By the G-
invariance of Q$, we identify J?,/, with the corresponding 3-form on X^/G. 
Let H^j be the holomorphic 3-form on W^ defined as S^ := flflq. Let 
•Kvv/P1 be the relative canonical bundle of the family n: W —> P 1 . After 
Theorem 3.1, the line bundle ir*Kw/pi (resp. TP 1 ) is trivialized by the 
section E^/yo(ip) (resp. d/dt = 2mq(d/dq) = 2m q (dip/dq) (d/dip)) near 
ip = oo (equivalently q = 0). Set rj(q) := Il^LiC1 ~ «")• 

In [1], [2], Bershadsky-Cecotti-Ooguri-Vafamade the following 

Conjecture 3.1. Up to a constant, the following identity of functions near 
ip = oo holds under the identification (3.1): 

( oo ^ 2 / „ \ S a 2 

I OC - . - W n M l I / " l \ 3 / - / 

TBCOV(W^) ,«n%r-<i-rt^) ( ^ ) T < 
2 . _ . 6 2 

6?) /7 

w/iere 7r»iCw/pi is equipped with the L2-metric and T P 1 is equipped with 
the Weil-Petersson metric. 

This conjecture can be separated into the following two conjectures. 
Under the identification (3.1), define two functions F$°£(ip) and F^(q) by 

62 

Conjecture 3.2. (J4^ TTie following identity holds: 

d t 50 ^ 2ndgn d ^ 2 < V 

^ n,d=l y d=l v y ' 

flty J7p £o a constant, the following identity of functions near ip = oo holds: 

T B C O V ( W V ) = 

2 
" * \ " d 

Cp(^) VJ/OW; y ^ 

For Conjecture (A), we refer to [13]. 
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4. An explicit formula for the BCOV invariant 

Let y be a (possibly singular) projective fourfold, and let ir: y —» P 1 be 
a surjective flat holomorphic map. Set V := {tp G P 1 ; SingY,/, ^ 0} and 
T>* := {ijj G 23; Singly, consists of a unique ordinary double point}. 

In Sec. 4, we assume the following: 
(i) V* is a non-empty, finite subset of P 1 such that V\T>* = {oo}; 
(ii) if V> G P 1 \ V (resp. tp G £>*), then Y,/, := 7r_1(V') is a (resp. singular) 
Calabi-Yau threefold with h2(Q\r ) = 1. 

For V £ P 1 \ {oo}, let (Def(Y^), [Y^]) be the Kuranishi space of Y$. 
By the universal property of the Kuranishi space, there exists a unique 
map of germs /x,/,: (P 1 , ^ ) —> (Def(Y,/,), [Y^]) such that the deformation 
germ 7r: (^, Y,/,) —> (P1,^)) is induced from the universal family over 
(Def(Y^), [Y,/,]) by /x^. By (i), ^ is not a constant map. By (ii), we have 
(Def(Y,/,), [Y,/,]) = (C,0). Let r(tp) G Z>i be the ramification index of fi^ 
at V- Write P* = {Dk}keK and {^ G P 1 \ {oo}; r(V) > 1} = {Rjhej. 

Let E be a meromorphic section of TrtKy/pi defined on P 1 , and write 
div(E) = Y^i%imipi + moo-Poo, where P; ^ P*, for i G / . Identify 
Pi,Rj,Dk with their coordinates ip(Pi),ip(Rj),i{j(Dk), respectively. Let x 
be the Euler number of a general fiber Y$. 

Theorem 4 .1 . Up to a constant, the following identity of functions on P 1 

holds: 

TBCOV(Y$) = 
^MMK W» - p,)^^^ - Kir™-* "* d* 

See [9], [20] for the proof, in which the theory of Quillen metrics [3], 
[4], [5] plays the central role. Theorem 4.1, applied to the family of quintic 
mirror threefolds 7r: W —* P 1 , yields the following result [9]. 

Theorem 4.2. Conjecture (B) holds, i.e., the following identity of func
tions on P 1 holds: 

TBCOV(W^) = Const. ^ - T T ( ^ - 1 ) » ( S ^ ) T „ ^ 
d 2 

For other examples of one-parameter families of Calabi-Yau threefolds 
satisfying assumptions (i), (ii), we refer to [12]. 
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5. BCOV invariant and the Borcherds product 

Let S be a K3 surface, i.e., a two-dimensional Calabi-Yau manifold. Fix an 
even unimodular lattice LA-3 with signature (3,19). Then H2(S, Z) endowed 
with the cup-product is isometric to LK3- In Sec. 5, we assume the existence 
of a holomorphic involution 0: S —> S such that 9* = - 1 on H°(S,Ks). 
Then S is an algebraic K3 surface. Let T be an elliptic curve. Let —IT : T —> 
T be the holomorphic involution that assigns x £ T the inverse —x € T. 
The involution (6, - 1 T ) on S x T acts trivially on H°(S x T,KSXT)- Set 
Z2 := Z/2Z. By identifying the generator of Z2 with 0, — I T , (#, — I T ) , the 
group Z2 acts on S,T, S x T, respectively. After Borcea [6] and Voisin [17], 
we make the following 

Definition 5.1. For a K3 surface with involution (S,9) and an elliptic 
curve T, let X(s,e,T) be the Calabi-Yau threefold defined as the blow
up of S x T /Z 2 along Sing(5 x T/Z 2) . Let m: X{SJIT) -> 5/Z 2 (resp. 
7r2: X(S,9,T) —* r / Z 2 ) be the projection induced from the projection 
p r^ S x T -> S (resp. pr2: S x T -> T). The triple (X(5)eiT),7ri,7r2) is 
called the Borcea-Voisin threefold associated with (S,6,T). Two Borcea-
Voisin threefolds (X(s,9,T)i'7rii'n'2) and (^(,s',0',T')>7ri>'7r

2) are isomorphic if 
there exist isomorphisms of complex manifolds 

f- X(s,e,T) —> X(S',e',T'), 9'- S/Z2 —> S /Z 2 , ft: T /Z 2 —> T / Z 2 

such that 7i"i o / = g o 7Ti and 7r2 o / = ft o 7r2. 

Definition 5.2. Let A c L^3 be a primitive 2-elementary sublattice 
of rank r(A) with signature (2,r(A) — 2). A Borcea-Voisin threefold 
(-X(S,fl,T),7ri,7r2) is of type Aif ffi(S.Z) : = { ! e f f 2 ( 5 , Z ) ; 0*Z = - / } S A. 

When X^s^^T) is a Borcea-Voisin threefold of type A, (5,8) is a 2-
elementary K3 surface of type A1 in the sense of [19]. 

Let fiA := {[rj\ € P(A <g> C); (T],T])A = 0, (77,T7>A > 0} be the period 
domain for 2-elementary K3 surfaces of type A x , which consists of two 
connected components fi^, fi^. Let Div,n be a symmetric bounded domain 
of type IV of dimension n. Then Div,n — fiA- Let 0(A) be the group of 
isometries of A, which acts projectively on fiA. There exists a subgroup 
0 + (A) C O(A) of index 2 preserving fi^. By [19], we have the following 

Theorem 5.1. The coarse moduli space of Borcea-Voisin threefolds of type 
A is isomorphic to a dense Zariski open subset of the locally symmetric 
variety (0+(A)\DIV<r{A)_2) x (SL2{Z)\Sj). 
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Let l m be the identity m x m-matrix. Let Ii,m(2) be the symmetric 
matrix of rank m + 1 with signature (1, m) defined as Ii,m(2) := 2(J_1° ). 
Identify Hi,m(2) with the corresponding Lorentzian lattice. For 1 < m < 
9, set T m := (°g) © Ii,m_i(2) and identify Tm with the corresponding 
lattice of rank m + 2 with signature (2,m). There exists an isomorphism 
^xm = I i ,m-i (2)®R + iC I l m _ l ( 2 ) , where Ch ?m_1(2) is the light cone of the 
Lorentzian vector space Ii,m_i(2) ® R. Let Wm be the Weyl chamber of 
Cii,m_i (2) containing the Weyl vector pm := 1 ( 3 , - 1 , . . . , - 1 ) G I i ,m_i(2) v , 
where I i ,m_i(2) v c Ii,m_i(2) <g> Q is the dual lattice of Ii ,m_i(2). 

For an automorphic form ty on Div,m or on ft, let ||\I/|| be the Petersson 
norm of \&. We shall prove the following in [22]: 

Theorem 5.2. For 3 < m < 9, there exists an automorphic form $ m on 
Div,m for 0 + ( T m ) of weight 14 — m satisfying the following: 
(1) For every Borcea-Voisin threefold {X^S^^-KI,^) of type Tm, 

(5.1) ^cov(X(SAT)) = ll<I>mMS,0))||2 | |A( ro(T))| |2 . 

Here m{S,6) G 0+(Tm)\DIVtm (resp. w{T) G SL2(Z)\Sj) denotes the 
period of (S, 9) (resp. T), and A(r) is the Jacobi A-function. 
(2) There exists a generalized Kac-Moody superalgebra gm such that $ m is 
the denominator function for Qm up to a constant. 
(3) For z G Ii,m_i(2) ® R + i Wm with (Imz) • (Imz) S> 0, the following 
identity holds up to a constant: 

$m(2) = e 2 - W J ] TJ (1_e2niT.z)cW(T.r/2)^ 

5€{0,1} re(«pm+Ii ,m_i(2))nWV 

where W£ C Ii, m_i(2) <8> R is i/ie dtta/ cone of Wm, and the series 

ez+6/4, 8 = 0,1, are defined by the generating functions 

A m l M ' \ -8J?(4T 
» ?(2T)V4T)-80A l(T) l o-m (<J = 0), 

J 7(2r ) - 1 6 e A l + 1 / 2 ( r ) 1 0 — (<J = 1). 

i/ere r?(r) is £fte Dedekind rj-function and #Ai+<5/2(T) := Smez+<5/2 9m • 

R e m a r k 5.1. Theorem 5.2 provides evidence for the Harvey-Moore con
jecture [11] Sec. 7. When A = (°*) ©Ii i 9(2), we proved a formula like (5.1) 
for the function TBCOV on the moduli space of Borcea-Voisin threefolds of 
type A, in which $ m should be replaced by the Borcherds ^-function [7]. 
See [9], [11], [19] for more details. 
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In [19], we introduced an invariant TT_L (S, 8) of a 2-elementary KZ sur
face (S,6) of type T^ . By [19], [22], there exists a constant Cjm with 

(5.2) rTx (S,0) = CJm | | $ m ( r o (5 ,^ ) ) | r 1 / 2 . 

For every Borcea-Voisin threefold (.X'(s,0,T)>7ri)7r2) of type TTO, we get by 
(5.1), (5.2) 

(5.3) T B COV(X(SAT) ) = C*m rTx (S,0)-4 | |A(s7(T))||2. 

As a generalization of (5.3), we make the following 

Conjecture 5.1. There exists a constant CA depending only on the lattice 
A such that for every Borcea-Voisin threefold (-X'(s,0,T)!7ri>7r2) of type A, 

(5.4) T B C O V ( X ( S A T ) ) = C A T A X ( S , 0 ) - 4 | | A M T ) ) | | 2 . 

Remeirk 5.2. Equation (5.4) may be regarded as a blow-down formula 
for the BCOV invariant for the blow-down X(s,e,T) - ' S x T/Z 2 . For the 
corresponding blow-down formula for Quillen metrics, we refer to [3]. Notice 
that one can not apply at once the result of Bismut [3] Sec. 8 to the blow-
down X(s,e,T) - » S x T/Z2, because S x T/Z2 is not smooth. 

In the rest of Sec. 5, we study a class of Borcea-Voisin threefolds 
parametrized by some configuration spaces. Let M(n,2n) be the set of 
all complex n x 2n-matrices, and define M°(n, 2n) C M(n, 2n) as the open 
subset {(a! , . . . ,a2„) € M(n,2n); d e t ^ , - • • , a i n ) ^ 0, Vii < • •• < i„}. 
Let X°(n, 2n) := GLn(C)\M°(n, 2n)/(C*)2" be the configuration space of 
ordered 2n hyperplanes of P"~ x in general position. Here an element of 
(C*)2n is regarded as a diagonal 2n x 2n-matrix. For A € M°(n,2n), set 

An(A) := Yl de t ( a i l , . . . , a i n) det(a ; ) 1 , . . . , ajn), 
{ t i < - - < i n } U { j i < - < j „ } = { l , - , 2 n } 

whose norm gives rise to a function on M°(n, 2n): 

[Jp^-i I H i=1(oiia;i H h anixn)\ J 

Here dx = Y^i=\{~^Yxi dxi A • • • A dxi-i A dxi+\ A • • • A dxn. Then HA,, 
descends to a function on X°(n, 2n). We consider the cases n = 2,3. 



488 K.-I. Yoshikawa 

For A = (ay) G M°(2,4) and B = (bi:j) € M°(3,6), set 

4 

EA •= {((xi : x2),y) e O P I (2 ) ; y2 = J J ( o n xi + a2i x2)}, 
»=i 

6 

S B :={((zi :^2 :«3),tw) e Op* (3); w2 = JJ(6i i «i + b2iz2 + b3i z3)}. 
i = l 

Then ^ is an elliptic curve, and SB is a singular K3 surface with 15 
ordinary double points. Obviously, EA = EA> (resp. SB = SB>) if A = A' 
in X(2,4) (resp. B = B' in X(3,6)). Let S B be the minimal resolution of 
SB- The involution on SB defined as 9B(Z,W) := (z,—w) for (z,w) € 5 B 

induces an involution LB on 5 B - Then i*B = - 1 on H°(SB, Kg ). Similarly, 
the involution on EA defined as (x,y) i-» (x, —y) coincides with —1EA-

For A € M°(2,4) and B e M°(3,6), define 

Z(A,B) :=X(SB,LB,EA)> 

which is equipped with the projections TT\ : Z(A,B) —> SB/LB and 
7T2: ^ (A,B) -^ EA/ - 1EA- By e.g. [18], ( ^ . B ^ T T I , ^ ) is a Borcea-Voisin 

threefold of type T4. By (5.1), (5.2) and [21], we have the following 

Theo rem 5.3. The following identity of functions on X°(2,4) x X°(3,6) 
holds: 

TBCOV(Z{A,B)) = Const. ||A2(A)||4 | |A3(B)||. 

This algebraic expression of the BCOV invariant of Z(A,B) is a n ana
logue of the Kronecker limit formula for elliptic curves. It seems to be an 
interesting problem to determine the constant in Theorem 5.3. 
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We present a simple, but efficient, way to calculate connection matrices between 
sets of independent local solutions, defined at two neighboring singular points, 
of Fuchsian differential equations of quite large orders, such as those found for 
the third and fourth contribution (x ' 3 ' and x ' 4 ' ) t ° * n e magnetic susceptibility 
of square lattice Ising model. We use the previous connection matrices to get 
the exact explicit expressions of all the monodromy matrices of the Fuchsian 
differential equation for x ' 3 ' (and x ' 4 ' ) expressed in the same basis of solutions. 
These monodromy matrices are the generators of the differential Galois group 
of the Fuchsian differential equations for x ' 3 ' (and x ' 4 ' ) . whose analysis is just 
sketched here. 
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1. Introduction 

Since the work of T.T. Wu, B. M. McCoy, C.A. Tracy and E. Barouch \ 
it is known that the expansion in n-particle contributions to the zero field 
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susceptibility of the square lattice Ising model at temperature T can be 
written as an infinite sum: 

oo 

x(T) = 1£x{n\T) (1.1) 
n = l 

of (n — l)-dimensional integrals 2 _ 7 , the sum being restricted to odd (re
spectively even) n for the high (respectively low) temperature case. 

As far as regular singular points are concerned (physical or non-physical 
singularities in the complex plane), and besides the known s = ±1 and 
s = ±i singularities, B. Nickel showed 6 that ^( 2 n + 1 ) is singular for the 
following finite values of s — sh(2J/kT) lying on the \s — 1| unit circle 
(m = k = 0 excluded): 

2 • (s + -) = uk + - 1 + um + 4 r 
\ s/ uK um 

u2n+1 = 1, -n < m, k < n (1.2) 

In the following we will call these singularities: "Nickel singularities". When 
n increases, the singularities of the higher-particle components of x(s) accu
mulate on the unit circle \s\ = 1. The existence of such a natural boundary 
for the total x(s)> shows that x(s) 1S n°t D-finite (non holonomic3 as a 
function of s). 

A significant amount of work had been performed to generate isotropic 
series coefficients for \ ^ (by B. Nickel 6 '7 up to order 116, then to order 
257 by A.J. Guttmann and W. Orrick4). More recently, W. Orrick et al. 8, 
have generated coefficients5 of x(s) UP to order 323 and 646 for high and 
low temperature series in s, using some non-linear Painleve difference equa
tions for the correlation functions 8 _ 1 2 . As a consequence of this non-linear 
Painleve difference equation, and the remarkable associated quadratic dou
ble recursion on the correlation functions, the computer algorithm had a 
0(N6) polynomial growth of the calculation of the series expansion instead 
of an exponential growth that one would expect at first sight. However, in 
such a non-linear, non-holonomic, Painleve-oriented approach, one obtains 
results directly for the total susceptibility \{s) which do not satisfy any 

3 The fact this natural boundary may be a "porous" natural frontier allowing some ana
lytical continuation through it is not relevant here: one just need an infinite accumulation 
of singularities (not necessarily on a curve ...) to rule out the D-finite character of x-
4A.J. Guttmann and W. Orrick private communication. 
5 The short-distance terms were shown to have the form (T - Tc)

p • (log\T — Tc\)
q with 

p>q2. 
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linear differential equation, and thus prevents the easily disentangling of 
the contributions of the various holonomic x ^ ' s . 

In contrast, we consider here, a strictly holonomic approach. This ap
proach 1 3 _ 1 5 enabled us to get 490 coefficients6 of the series expansion of 
X^3' (resp. 390 coefficients for x^)> from which we have deduced 1 3 _ 1 6 

the Fuchsian differential equation of order seven (resp.ten) satisfied by x'3^ 
(resp. x^4')- We will focus, here, on the differential Galois group of these 
order seven and ten Fuchsian ODE's. 

2. The Fuchsian differential equations satisfied by X^(w) 

and X('4HW) 

Similarly to Nickel's papers 6,r, we start using the multiple integral form of 

the x ^ 's> o r more precisely of some normalized expressions x ^ : 

X{n)(s)= S± X{n)(s), n = 3,4, ••• (2.1) 

5+ = -i '-—, T>TC (n odd) 

£L = (1 - s- 4) 1 / 4 , T<TC (n even) 

where: 

x{r (")(iu) = JdnV (f[vi) ••R(n)-^(n) (2.2) 

with (each angle fa varying from 0 to 2n): 

n—\ , , n 1 riti 

<rv = J ] ? with 5 > = 0' Rin)= i m 1 - * 
Hin) = I I 4 7 7 ^ T 2 • ^n2 (^r1) (2-3) 

Instead of the usual6,7 variable s, we found it more suitable to use w = 
\s/{\ + s2) which has, by construction, Kramers-Wannier duality invari-
ance (s <-> 1/s) and thus allows us to deal with both limits (high and low 
temperature, small and large s) on an equal footing 13~15. The quantities 

6We thank J. Dethridge for writing an optimized C + + program that confirmed the 
Fuchsian ODE we found for x ' 3 ' i providing hundred more coefficients all in agreement 
with our Fuchsian ODE. 
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Xj and yj can be written in the following form 13 15: 

2w 

1 — 2w cos (j)j + y/(l — 2w cos (f)j)2 — Aw2 

2w .„ JN 

Vj = / (2-4) 
y ( l — 2 w c o s ^ ) 2 — 4w2 

It is straightforward to see that y^ is onft/ a function of the variable w. 
Prom now on, we thus focus on \ ^ seen as a function of the well-suited 
variable w instead of s 6 '7. One may expand the integrand in (2.2) in this 
variable w, and integrate the angular part. 

We do not recall, here, the concepts, tricks and tools that have been 
necessary to generate very large series expansion for x^3\w) and x^{w) 
with a polynomial growth of the calculations 13~15, 

Given the expansion of x^3\w) up to w490, the next step amounts to 
encoding all the numbers in this long series into a linear differential equa
tion. Note that such an equation should exist though its order is unknown7. 
Let us say that, using a dedicated program for searching8 for such a finite 
order linear differential equation with polynomial coefficients in w, we suc
ceeded finally in finding the following linear differential equation of order 
seven satisfied by the 490 terms we have calculated for x^: 

7 

E a« • iS F H = ° with: (2-5) 
n=0 

an = wn • (1 - 4 t o ) 9 ( n - 2 ' (1 + 4u>)e<n-4> Pn(w), n = 6, 5, • • • , 0 

where: 8(m) = sup(m, 0), and: a7 = 

w 
7 -(1-w) (l + 2w) ( l - 4 w ) 5 ( l + 4 u ; ) 3 (l + 3u) + 4m2) P7(w) 

where P7(W),PQ(W) • • •, Po(w) are polynomials of degree respectively 28, 
34, 36, 38, 39, 40, 40 and 36 in w 13. 

Furthermore, besides the known singularities (1.2) mentioned above, we 
remark the occurrence of the roots of the polynomial P7 of degree 28 in 
w, and the two quadratic numbers roots of 1 + 3w + 4w2 = 0 which 

A lower bound for the order of this linear differential equation would be extremely 
useful : such a lower bound does not exist at the present moment. 
8Note that we, first, actually found an order twelve Fuchsian ODE and, then, we reduced 
it (by factorization of the differential operator) to a seventh order operator. This order 
twelve differential equation requires much less coefficients in the series expansion to be 
guessed than the order seven Fuchsian ODE we describe here ! It is actually easier to 
find the order twelve differential equation than the order seven ODE !! 
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are not 1T Nickel singularities (they are not of the form (1.2)). The two 
quadratic numbers are not on the s-unit circle : \s\ = \/2 and |s| = l / \ / 2 . 
These quadratic numbers do not occur in the "physical solution" x ^ • For 
P7, near any of its roots, all the local solutions carry no logarithmic terms 
and are analytical since the exponents are all positive integers. The roots 
of P-j are thus apparent singularities 18,19 of the Fuchsian equation (2.5). 

The order seven linear differential operator L-j associated with the dif
ferential equation satisfied by x ^ has the following factorization properties 
13,14,16. 

L7 = L i © L 6 , L6 = Ya-Z2-Nl (2.6) 

where9 L\ is a first order differential operator which has the first contribu
tion to the magnetic susceptibility, namely x^ = 2w/(l—4w), as solution. 

In the same way, we found that the order ten linear differential opera
tor Lio, associated with the differential equation satisfied by x^4\ n a s the 
following factorization properties 15'16: 

Lio = N0®L8, L8 = M2-G(L) (2.7) 

where No is an order two differential operator which has the second con
tribution to the magnetic susceptibility, x ^ a s solution and where G(L) 
is an order four differential operator that can be factorized in a product of 
four order one differential operators 15. 

3. Differential Galois group 

A fundamental concept to understand (the symmetries, the solutions of) 
these exact Fuchsian differential equations is the so-called differential Galois 
group 2 0 _ 2 4

) which requires the computation of all the monodromy matrices 
associated with each (non apparent) regular singular point, these matrices 
being considered in the same basis10. Differential Galois groups have been 
calculated for simple enough second order, or even third order, ODE's. 
However, finding the differential Galois group of such higher order Fuch
sian differential equations (order seven for x^3\ order ten for x ^ ) with 
eight regular singular points (for x '3 ' ) is n ° t an e a s v task. Along this side 
a first step amounts to seeing that the corresponding (order seven, ten) 

9For the notations see 13,14,16 f o r ^(3) ) a n d 15,16 for ^(4) 
10These monodromy matrices are the generators of the monodromy group which identifies 
with the differential Galois group when there are no irregular singularities, and, thus, no 
Stokes matrices 2 5 . 
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differential operators do factorize in smaller order differential operators, as 
a consequence of some rational and algebraic solutions and other singled 
out solutions 16. These factorizations yield a particular block-matrix form 
of the monodromy matrices 16. The calculation of local monodromy matri
ces in some "well-suited" local (Probenius series solution) bases is easy to 
perform, however the calculation of the so-called connection matrices corre
sponding to the "matching" of the various well-suited local bases associated 
with the various regular singularities is a hard non-local problem. Of course 
from the knowledge of all these connection matrices one can immediately 
write the monodromy matrices in a unique basis of solutions16. 

Prom exact Fuchsian ODE's one can calculate very large series expan
sions for these (well-suited local Probenius) solutions, sufficiently large that 
the evaluation of these series far away from any regular singularity can be 
performed11 with a very large accuracy (400, 800, 1000 digits ...). As far as 
X^3' is concerned one can reduce 16 the calculation of these connection and 
monodromy matrices, to the 6 x 6 matrices of an order six 16 differential 
operator LQ appearing in the decomposition (2.6). Connecting various sets 
of Probenius series-solutions well-suited to the various sets of regular singu
lar points amounts to solving a linear system of 36 unknowns (the entries 
of the connection matrix). We have obtained these entries in floating point 
form with a very large number of digits (400, 800, 1000, ...). We have, then, 
been able to actually "recognize" these entries obtained in floating form 
with a large number of digits 16. 

In particular it is shown in 16 that the connection matrix between the 
singularity points 0 and 1/4 (matching the well-suited local series-basis 
near w = 0 and the well-suited local series-basis near w = 1/4) is a matrix 
where the entries are expressions in terms of y/3, n, 1/ir, 1/n2, ... and a 
(transcendental) constant l£ introduced in equation (7.12) of 1: 

^ n: i: ̂ MwM^r->= 
= .000814462565662504439391217128562721997861158118508••• 

Y = 2/i - J / 3 
(2/1 + 2/2) (2/2 + 2/3) (2/1 + 2/2 + 2/3)' 

This transcendental constant can actually be written in term of the Clausen 
function CI2 • 

73+ = ^-(Y+2-3V'-C14)) ( 31 ) 

Within the radius of convergence of these series. 
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where Ch denotes the Clausen function : 

sin(n 6) 
ch(9) = Yl 

n=l 

This constant 1$ can also be written in terms of dilogarithms, polygamma 
functions or Barnes G-functions : 

3\/3 
4+ (1/6 

1 

' ) = -

1 6 7T2 

_ ^ 
2 

Im (dilog ( l /2 - 1/2iV3J) 

( * (1,2/3) + tf (1,5/6) - # (1,1/6) - * (1,1/3)) 

The 6 x 6 connection matrix C(0,1/4) for the order six differential 
operator LQ matching the Frobenius series-solutions around w = 0 and the 
ones around w = 1/4, reads: 

(3.2) 7(0, 1/4) 

1 

1 

0 

5 

5 
4 

29 2TT2 

. 16 3 

= 
0 

0 

Z-KVZ 
32 

i - 2 • /+ 
3 l S3 

3TT\/3 
32 

15TTV3 
64 

0 

9y/3 
64-7T 

0 

3V3 
64TT 

4 5 ^ 3 
256TT 

225V3 3TT\ /3 
1024TT 64 

0 

0 

0 

0 

0 

7T2 

64 

0 

0 

0 

0 

1 
32 

0 

0 

0 

0 

1 
16TT 

0 

0 

Not surprisingly12 a lot of 7r's "pop out" in the entries of these connection 
matrices. We will keep track of the TT'S occurring in the entries of connection 
matrices through the introduction of the variable a = 2 in. 

The local monodromy matrices can easily be calculated 16 since they 
correspond, mostly, to "logarithmic monodromies" and will be deduced 
from simple calculations using the fact that each logarithm (or power of a 
logarithm) occurring in a (Frobenius series) solution, is simply changed as 
follows : \n(w) —> ln(w) + Q, where Q will denote in the following 2in. 
From the local monodromy matrix Loc(Sl), expressed in the w = 1/4 
well-suited local series-basis, and from the connection matrix (3.2), the 

1 2 One can expect the entries of the connection matrices to be evaluations of (general
izations of) hypergeometric functions, or solutions of Fuchsian differential equations. 
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monodromy matrix around w 
well suited basis reads 16: 

1/4, expressed in terms of the (w — 0)-

24a 4 -M„, = 0 ( l /4 ) (a , ft) = 
A 0 

B C 

= C(0, 1/4) • Loc{n) • C(0, 1/4)-1 

(3.3) 

where 
A 

B 
and [C] 

-24 a 4 

- 4 8 a 4 

0 

- 4 8 pi 

12 a 2 p 3 

-(87 + 8 a 2 

read 

)a4 

respectively: 

0 

24 a 4 

0 

32fi/92 

4 ( 7 5 - 4 a2) a 

0 

2ft 

0 

-144 a2ft 

24 a 4 

48ft (9a 2 + 80ft) 

-300 a2ft 

3 ( 4 a 2 - 7 5 ) a 2 f t 

with pi = 5 a 4 + 8fi2 + 8 f i V , p2 

5 a 2 + 4fi + 4 f i a 2 , and: 
4 f t a 2 - 7 5 f t - 1 5 a 2 and p3 = 

C 

24 a 4 -384a 2f t 1536 ft2 

0 24 a 4 -192a 2 f t 

0 0 24 a4 

Note that the transcendental constant l£ has disappeared in the final exact 
expression of (3.3) which actually depends only on a and ft. This (a, ft) 
way of writing the monodromy matrix (3.3) enables to get straightforwardly 
the N-th power of (3.3): 

M t u = 0 ( l /4)(a , ft) JV MU ) = 0(l/4)(a, TV • ft) (3.4) 

Let us introduce the following choice of ordering of the eight singulari
ties, namely oo, 1, 1/4, u>i, - 1 / 2 , - 1 / 4 , 0, w2 (wi = ( -3 + i v

/ (7)) /8 
and w-2 = w\ are the two quadratic number roots of 1 + 3w + 4 w 2 = 0), 
the first monodromy matrix Mi is, thus, the monodromy matrix M„;=o(oo) 
(see (3.3)) at infinity with a = ft = 2iir, .M(oo), the second monodromy 
Mi matrix being the monodromy matrix at w = 1, M.(l), ... This is actu
ally the particular choice of ordering of the eight singularities, such that a 
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product of monodromy matrices is equal to the identity matrix13: 

Mi • M2 • M3 • M4 • M4 • M6 • M7 • M8 = Id 

= M(oo) • M{1) • M(l/4) • M(w!) (3.5) 

xM(-l/2) • M(-l/4) • M(0) • M{w2) 

It is important to note that relation (3.5) is not verified by the (a, ft) 
extension (like (3.3)) of the monodromy matrices M,. If one considers re
lation (3.5) for the (a, fi) extensions of the Mj's, one will find that (3.5) is 
satisfied only when a is equal to fi, but (of course14) this a = ft matrix 
identity is verified for any value of fi, not necessarily equal to 2 i ir. 

3.1. Mutatis mutandis for x^ 

Similarly to x ' 3 ' the differential operator for x ^ presents remarkable fac
torizations that yield a particular block-matrix form of the monodromy 
matrices 16. Similarly, again, one can consider the (Probenius series) solu
tions of the differential operator associated with x^4' around x = 4w2 = 0 
and around the ferromagnetic (and antiferromagnetic) critical point x = 1 
respectively. Again the corresponding connection matrix (matching the so
lutions around the singularity points x = 0 and the ones around the sin
gularity point x = 4iu2 = 1 ) have entries which are expressions in terms 
of 7r2, rational numbers but also of constants like constant 1^ introduced 
in : which can actually be written in term of the Riemann zeta function, 
as follows : 

^ - d p - C r - i - i - ' w ) <3-6> 
The derivation of the two results (3.1), (3.6) for the two transcendental 
constants 7̂ " and I4 has never been published15 but these results appeared 
in a conference proceedings 26. We have actually checked that l£ and 
I± we got in our calculations of connection matrices displayed in 27 as 
floating numbers with respectively 421 digits and 431 digits accuracy, are 

13 Of course, from this relation, one also has seven other relations deduced by cyclical 
permutations. 
1 4A matrix identity like (3.5) yields a set of polynomial (with integer coefficients) re
lations on U = 2in. The number 7r being transcendental it is not the solution of a 
polynomial with integer coefficients. These polynomial relations have, thus, to be poly
nomial identities valid for any Q. 
1 5We thank C. A. Tracy for pointing out the existence of these two results (3.1), (3.6) 
and reference 2 6 . 
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actually in agreement with the previous two formula. These two results 
(3.1), (3.6) provide a clear answer to the question of how "complicated 
and transcendental" some of the constants occurring in the entries of the 
connection matrices can be. These two remarkable exact formulas (3.1), 
(3.6) are not totally surprising when one recalls the deep link between zeta 
functions, poly logarithms and hypergeometric series 28~30. Along this line, 
and keeping in mind that we see all our Ising susceptibility calculations 
as a "laboratory" for other more general problems (Feynman diagrams, 
...), we should also recall the various papers of D. J. Broadhurst 31 where 
C72(f) and £(3) actually occur in a Feynman-diagram-hypergeometric-
polylogarithm-zeta framework (see for instance equation (163) in 3 1 ) . 

Similarly to the previous results for x ^ the monodromy matrices writ
ten in the same basis of solution, deduced from the connection matrices and 
the local monodromy matrices are such that a product in a certain order of 
them is the identity matrix. Denoting by Mx=o(0), M x = 0 ( l ) , Mx=o(4) and 
Mx=o(oo) the monodromy matrices expressed in the same x = 0 well-suited 
basis, one obtains: 

Mx=0(oo) • Mx = 0(4) • M x = 0 ( l ) • Mx = 0(0) = Id (3.7) 

This matrix identity is valid irrespective of the "not yet guessed" con
stants 16. 

4. Conclusion 

The high order Fuchsian equations we have sketched here present many 
interesting mathematical properties close to the ones of the so-called rigid 
local systems 32, these rigid local systems exhibiting remarkable geometrical 
interpretations 33 as periods of some algebraic varieties. This "rigidity16" 
emerges through the log-singularities of the solutions of these Fuchsian 
ODE's: the powers of the logarithms of these solutions are "smaller" than 
one could expect at first sight. It is worth noting that almost all these math
ematical structures, or singled-out properties, we sketched here, or in pre
vious publications 13_16

1 are far from being specific of the two-dimensional 
Ising model : they also occur on many problems of lattice statistical me
chanics or, even17, as A. J. Guttmann and I. Jensen saw it recently, on 

16 Let us recall that hypergeometric functions are totally rigid. 
1 7 The wronskian of the corresponding differential equation in 3 4 is also rational, the 
associated differential operator factorizes in a way totally similar to the Fuchsian ODE's 
for x ' 3 ' ar»d x ' 4 ' i large polynomial corresponding to apparent singularities also occur, 
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enumerative combinatorics problems like, for instance, the generating func
tion of the three-choice polygon 34 . 

We have also seen in some of our calculations 14,15 a clear occurence of 
hypergeometric functions, hypergeometric series and in some of our calcu
lations (not displayed here) generalizations of hypergeometric functions to 
several complex variables: Appel functions 35, Kampe de Feriet, Lauricella-
like functions, polylogarithms 31, Riemann zeta functions, multiple zeta 
values, ... The occurence of Riemann zeta function or dilogarithms in the 
two remarkable exact formulas (3.1), (3.6) is not totally surprising when 
one recalls the deep link between zeta functions, polylogarithms and hyper
geometric series 28_30 , 

We think that such "collisions" of concepts and structures of different 
domains of mathematics (differential geometry, number theory,...) are not a 
consequence of the free-fermion character of the Ising model, and that sim
ilar "convergence" should also be encountered on more complicated Yang-
Baxter integrable models18, the two-dimensional Ising model first "popping 
out" as a consequence of its simplicity. In a specific differential framework 
some of these interesting mathematical properties can clearly be seen in the 
analyzis of the differential Galois group of these Fuchsian equations. 

We have underlined the fact that, beyond a general analyzis of the 
differential Galois group 20, one can actually find the exact expressions 
of the non-local connection matrices from very simple matching of series 
calculations, and deduce, even for such high order Fuchsian ODE's, explicit 
representations of all the monodromy matrices in the same (non-local) basis 
of solutions, providing an effective way of writing explicit representations of 
all the elements of the monodromy group. The remarkable form, structures 
and properties (see (3.2), (3.3), (3.4), (3.5)) of the monodromy matrices in 
the same (non-local) basis of solutions is something one could not suspect 
at first sight from the general description of the differential Galois group. 
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We describe how conformal Minkowski, dS- and AdS-spaces can be united 
into a single submanifold [A/-] of R P 5 . It is the set of generators of the null 
cone in A42 , 4 . Conformal transformations on the Mink-, dS- and AdS-spaces 
are induced by 0 (2 ,4 ) linear transformations on M2'4. We also describe how 
Weyl transformations and conformal transformations can be resulted in on [A/]. 
In such a picture we give a description of how the conformal Mink-, dS- and 
AdS-spaces as well as [A/] are mapped from one to another by conformal maps. 
This implies that a CFT in one space can be translated into a CFT in another. 
As a consequence, the AdS/CFT-correspondence should be extended. 

1. Introduction 

In this talk we show how three kinds of spaces of constant curvatures are 
"unified" into a single space by conformal maps: the conformal Mink-, dS-
and yWS'-spaces are the same nature, resulted in from a hypersurface [A/] of 
RP5. Here [N] is the quotient space from the null "cone" M of A42'4 with 
the vertex at the origin. Although no metric on [N] can be induced naturally 
from M2'4, a set of metrics can be obtained, differing from each other by 
a Weyl factor. For a given metric on [A/], an 0(2,4) linear transformation 
on A42'4 induces a conformal transformation. 

Starting from this picture, it is not astonishing that the conformal Mink-
space, dS* and AdS* can be conformally mapped from one to another. This 

•This work is supported partly by NSFC (10505004, 10375087, 90503002). 

mailto:zhoub@bnu.edu.cn
mailto:hyguo@itp.ac.cn
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technique can be used to translate the content of a CFT from one space 
to another. Thus, if we have the AdS/CFT correspondence1 between AdS5 

and the conformal Mink-space, then we also have various correspondences: 
AdS5 between conformal dS4, AdS4 or [Af]. 

2. The Hypersurface [Af] C R P 5 

2.1. The 0(2,4)-Invariant Hypersurface o / R P 5 

For the (2 + 4)-d Mink-space M2'4 endowed with the inner product 

<i-<2--=VABti<2> ( r ? i B ) = d i a g ( l , - l , . . . , - l , l ) , (2.1) 

where A,B = 0 , 1 , . . . ,5, we consider its null cone 

Af: C-C = 0, (C^O) . (2.2) 

In M2'4 there is the standard equivalence relation ~, defined by 

C' ~ C «• C ' = c C for a nonzero c G R, (2.3) 

which makes the quotient space M2'4 — {0}/ ~ to be the projective space 
RP 5 . The equivalence class of a nonzero C € M2>4 is denoted by [£]. Thus, 
Af defines a quotient space Af'/ ~ C R P 5 , denoted by [Af] for convenience. 
It is obvious that [Af] is homeomorphic to S1 x 5 3 . 

As well known, a general linear transformation on M2'4 induces a pro
jective transformation on RP 5 . Since Af is invariant under the 0(2,4) linear 
transformations^, they induce some transformations on [Af]. In §2.3 we shall 
show how these transformations on [Af] can be made into a conformal trans
formation on [Af]. In §3 we shall show how these induced transformations 
on [Af] can be viewed as "conformal transformations" on the Mink-space, 
dS4 or AdS4. 

Before the topic of conformal transformations is concerned, we must 
investigate the problem of metric on [Af]. The metric rj = r}^ d(,A ® dQB 

on A42'4 cannot naturally induce a metric on [Af]. But it is not so bad. 
A curve 7 in Af can be projected to be a curve [7] in [Af]. However, the 

projection from 7 to [7] is not one-to-one. Another curve 7' in Af can be 
projected to the same [7] in [Af] iff their parameter equations differ from 
each other by a nonzero factor. We call such two curves in Af are equivalent 

^Strictly, Af is invariant under the action of 0 (2 ,4 ) x R, where r e IK refers to a scale 
product on .M 2 ' 4 by er. But the action of R induces the identity transformation on R P 5 . 
Thus it can be safely ruled out in our consideration. 
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to each other. Given two equivalent curves £A = C,A(t) a n <i C"4 = c(*) C^C*) 
in Af, their line elements, ds2 and ds'2, respectively, satisfy the relation 

ds'2=c2ds2. (2.4) 

We can turn to the tangent spaces of Af to formulate this result. We 
say that two tangent vectors, X € T^Af and X' e T^Af, are equivalent 
if [C] = [C] a n ( i TT*X = 7r*X' where 7r* is the pull-back of the natural 
projection it : Af —» [A/]. Now suppose X ' , Y ' £ T^A/" are equivalent to 
X, Y e T^Af, respectively. Then, 

77(X' ,Y')=c2r7(X,Y), (2.5) 

where c is the number in £' = c£. This is the precise meaning that is 
implied, consciously or unconsciously, by eq. (2.4). 

There are two important consequences of the above result. We describe 
them in §2.2 and §2.3, respectively. 

2.2. Induced Metric and Weyl Transformations on [Af] 

It is not only that [Af] is a quotient manifold, but also that all its tan
gent vectors can be viewed as residue classes: each residue class is a set of 
equivalent tangent vectors of Af. The usual way to deal with [Af] is select a 
representative from each point in [Af]. If all the representatives are selected 
perfectly, we obtain an embedding (p : [Af] —> Af satisfying 

7TO</) = id [ Af] , (2 .6) 

where id[//j is the identity map on [Af]. Then the problem of selecting a 
representative for each tangent vector of [Af] can be naturally solved by <j>*. 
In this way we obtain a metric 

g = <A*T7 (2-7) 

on [Af]. It is easy to see that g is a Lorentzian metric on [Af]. 
If (j)' : [Af] —> Af is also an embedding satisfying it o cf>' = i d j ^ , then for 

any [£] £ [Af], we have [C] = TT(<K[C])) = ?<"(</>'([£]))• Thus there must be a 
nonzero real number fi([C]) so that 

0'([C]) = n([<M[C]) . (2-8) 

Therefore, the two embeddings 4> a n c i <t>' define a nonzero function il on 
[Af]. It is obvious that Q is smooth. 

Let g' = <p'*T). Then it can be proved that 

g' = 0 2 g. (2.9) 
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That is, the consequence of the variation of embeddings is a Weyl transfor
mation for the induced metric on [A/]. 

2.3. Conformal Transformations on [Af] 

In §2.1 we have pointed out that an 0(2,4) transformation O on M2,i 

induces a transformation [O] on [AT], well defined by 

[0]([C]) := [OQ. (2.10) 

For a given O £ 0(2,4), [O] is a diffeomorphism on [A/]. Hence an action 
of 0(2,4) on [Af] on the left is resulted in. However, such an action is not 
effective, because it can be easily verified that 

[-E] = [E\=idw, or [-0] = [0] (2.11) 

for arbitrary 0 £ 0(2,4), where E is the identity transformation on M2,4. 
It can be proved that, for an 0 e 0(2,4), [0] = i d ^ iS O = ± E.It can 
be also proved that the action of 0(2,4) on [Af] is transitive. So [Af] is a 
homogeneous space of 0(2,4). 

Let <j> : [Af] —> Af be an embedding as described in §2.2, and O be an 
0(2,4) linear transformation. For an arbitrary [£] e [Af], we can set 

C==tf([C]), C ' :=*([C ' ] )=#[OC]) , (2-12) 

which are contained in (j>{[Af]) C Af and can be treated as representatives 
of [C] and [0][C]i respectively. On the other hand, since [£'] = 7r(£') = 
(TT o <f))([OC]) = id[jvr)([0C]) = [OC]> there must be a nonzero real number 
p([C]), depending on [£], such that 

S' = p([C])OC (2.13) 

In this way we obtain a nonzero function p on [Af]. 
Now let g be the metric on [Af] induced by the embedding <f>: [Af] —> Af, 

as shown in §2.2. It can be proved that [O] is a conformal transformation: 

[0]*g = p2 g. (2.14) 

So, every 0(2,4) linear transformation on X 2 , 4 induces a conformal 
transformation on ([A/],g). Due to eqs. (2.11), the conformal group of 
([Af],g) is the quotient group 0(2,4) /Z 2 . 
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3. Conformal Transformations on the Mink-Space, dS and 
AdS4 

In §2.2 and §2.3 the representatives are selected in a perfect way that they 
form a submanifold <f>([Af]) diffeomorphic to [A/]. In this section we use a not 
so perfect method: only most of, but not all, points in [Af] can find their 
respective representatives, located in a hyperplane V of M2'4 off C = 0. 
The resulted space VnAf are Mink, dS4 or AdS according to whether the 
normal vector n of V is null, timelike or spacelike. And "on" these spaces 
there are the "conformal transformations" which are of great interest in 
physics. 

3.1. The Minkowskian Case 

When the normal vector n is null, it can be extended to be a linear basis 
{eM, n, 1} of M2'4, with eM for fi = 0 , . . . , 3 tangent to Af and V, satisfying 

eM -e„=77M1/, e M -n = 0, eM • 1 = 0, 1-1 = 0, n l = l. (3.1) 

It is easy to see that a point £ £ V n Af iff 

t = a?ell + x+n + Rl, x+ = -^vx^xv j(2R), (3.2) 

with R a constant. And it is easy to verify that Af n V is a Mink-space 
because the induced metric on it is 

ds2
M = i]llvdxlldxv. (3.3) 

Now let us consider two equivalent curves with line elements dx2 and 
ds2

M, respectively. Assume that the former is just in Af, while the latter is 
i n P n j V . Then a relation similar to (2.4) can be obtained: 

dx2 = (n-C/R)2ds2
M, (3.4) 

where C is the point along the former curve. From eq. (3.4) it can be de
rived that the 0(2,4) linear transformations induce the so-called "conformal 
transformations" on the Mink-space2. 

3.2. The dS4 and AdS4 Cases 

When the normal vector n is timelike, the induced metric on V has a 
signature as diag(l, —1, —1, —1, —1). Assume n • n = 1 and extend it to be 
an orthonormal basis {e^, n | A = 0 , 1 , . . . , 4} of M2'4. Then < € V n N iff 

C = £AeA + Rn, r,AB£,Ae = -R2, (3.5) 



508 B. Zhou and H.-Y. Guo 

where R is a positive constant and (77,45) = diag(l, — 1, — 1, — 1, — 1). (We 
have carefully chosen n in order that R > 0.) Thus AfnV is a dS4 of radius 
R. 

Let d\2 and ds\ be the line elements of two equivalent curves 7 and 
7 + , respectively. Again the former is just in J\f and the latter is inVnAf. 
Then, with £ the point along 7, there is similarly the relation 

dX
2 = (n-C/R)2ds2

+. (3.6) 

Given an 0(2,4) linear transformation, 7 can be transformed to be 
another curve 7', lying still in J\f and equivalent to a curve 7+ lying in VnAf. 
Let their line elements be d\'2 and ds'2, respectively. Then a similar relation 
to (3.6) holds for d\'2 and ds'%. The 0(2,4) transformation preserves the 
line elements: d\'2 = d\2- Thus there will be 

/ / • \ 2 

ds+ = [^f) ds+ (3-7) 
for 7+ and -y'+, where £ and £' are a pair of equivalent points along 7 and 7', 
respectively. Therefore, similar to the Minkowskian case, an 0(2,4) linear 
transformation induces a "conformal transformation" on dS . 

In general a set of Beltrami coordinates 3~5 can be assigned to an equiv
alence class [£]. For £ as in eq. (3.5). The Beltrami coordinates for [£] is 

x»:=Re/Z\ (/i = 0, l ,2 ,3) , (3.8) 

provided that £4 ^ 0. In this coordinate system 

ds\ 
TJliv . TJiia'HvpX % 

a+(x) R2a+{x)2 dx» dxv, a±(x) := 1 T R~2r}lll/x
lxx1/. 

(3.9) 
Here o-{x) is preserved for AdS4. The Beltrami coordinates must satisfy 
<J+{x) > 0 4 '5. Isometries have the generic form as below4'5: 

(7+(a,x) ' " ' " R*y/o+{a){l + y/a+{a)y 
(3.10) 

where L = (L^) € 0(1,3), ±1 = detL and the constants a^ satisfy 
<j+(a) > 0. In the above, <r±(a,x) := 1 ^f R~2rjfll/a'J'xv, where a-(a,x) 
is preserved for AdS4. Other conformal transformations include 

r^-v/l — B2 

x"> = g y ^ (|/?| < 1) (3.11) 
1±/3A/CT + (X) 
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and 

*'" = *" - ^ ^ M b» ± ^ ^ / ^ ) , (3.12) 

where ± corresponds to the coordinate neighborhoods where £4 > 0 or 
£ 4 < 0 . 

When n is spacelike, it can be similarly proved that Af P V is AdS , 
Similarly, 0(2,4) transformations induce conforrnal transformations. Bel
trami coordinates can be also introduced in the same way as on AdS , and 
the conforrnal transformations take a similar form as in the above. 

4. The Extension of A d S / C F T Correspondence 

4.1. The Geometric Picture of AdS/CFT Correspondence 

The discussion in §2 and §3 reveals a wonderful geometric picture as follows. 
The 4-d space [N] = S1 x 5 3 is a hypersurface of RP 5 . Although no natural 
metric can be inherited from M2'4, [A/] can be realized (by an embedding 
<t> as in §2.2) as a hypersurface </>([A/]) of TV, enabling it to receive a metric 
g from the realization. The variousness of realizations ends up with Weyl 
transformations for the metric. Thus, [A/] is rather a Weyl space than a 
spacetime, having a vanishing Weyl tensor. Hence theory of physics in [A/], 
if exists, should be Weyl-invariant — at least it should be conformally 
invariant. 

If the infinity boundary is included in the Mink-space, dS4 and AdS4, 
they are also a realization of [A/], as if the projective plane model for RP 2 . 

What soever speaking, the Mink-space, dS4 and AdS4 can be embedded 
into A/-, as shown in §3. These three kinds of spaces, together with the 
perfect realizations of [A/] as in §2, can be related to each other by the 
projection. The maps from one to another are conforrnal maps, among 
which those from a Mink/dS4 /AdS4 to a Mmk/dS4/AdS4 are of special 
interest, which will be discussed elsewhere6. 

Using the above conforrnal maps, a CFT on the Mink-space can be 
transferred to be CFTs on both dS4 and AdS4, and vice versa. This fact 
can be summarized as the conforrnal triality of Mink-, dS- and AdS-sp&ces. 
In fact, a CFT on any of these spaces is a CFT on ([A/], g). 

Topologically AdS can be viewed as an open region in MP5, consisting 
of timelike 1-d linear subspaces of M2,4. In this sense [M] = d(AdS5). If 
the AdS/CFT correspondence1 is correct, then we can say that the corre
sponding CFT is on the Mink-space, on dS4, on AdS4, on ([A],g). Thus 
we might have as many AdS/CFT correspondences as possible. 
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The AdS/CFT correspondence for higher dimensions can be also con
jectured in the similar geometric picture. 

4.2. Null Geodesies 

As we know, up to re-parameterizations, null geodesies are invariant under 
conformal transformations and Weyl transformations. The null geodesies 
can also be illustrated in a geometric picture. 

Suppose [Co] and [Ci] are two distinct points in [A/]. Then Co a n d Ci 
are two linearly independent null vectors, spanning a 2-d linear subspace 
(plane) £ in M2'1. If, in addition, 

Co • Ci = 0, (4.1) 

then the whole £ except the origin 0 is contained in A/-. Thus E n P C NC\V, 
no matter whether the latter is the Mink-, dS- or yW5-space. Obviously, 
£ n V is a null straight line. If, in addition, we assume that Co a n d Ci £ "P, 
then the equation of E n V reads 

C(A) = ( l - A ) C 0 + A d - (4.2) 

For the 2-d linear subspace E C A42'4, an antisymmetric tensor 

u := Co ® Ci - Co ® Ci (4-3) 

can be defined in terms of its linear basis {Co> Ci}- If the linear basis of E is 
changed, then the antisymmetric tensor u/ corresponding to the new basis 
is proportional to u. In fact, w can be treated to be something like the area 
2-form of E. 

Meanwhile, for the straight line (4.2), a 6-d angular momentum tensor 

can be denned. Substituting eq. (4.2) into the above, we find that the an
gular momentum is conserved: 

C = u. (4.5) 

It is very intuitive and can be proved that, in the Mink, dS and AdS 
cases, EfTP is a null geodesic. The 6-d angular momentum can be expressed 
in terms of the 4-d angular momentum and the 4-momentum of the massless 
particle. 
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In order to see what it looks like in the Minkowski or Beltrami coordi
nates, we consider two special cases. In the first case, V is a null hyperplane 
C = R, where C± = -^ (±<4 + <5)- Substitution of eq. (3.2) to (4.2) yields 

" - O - i K + S * ^ f i ( l - ^ + A C f <4'6) 

Let's write the energy-momentum and angular momentum as 

dx11 

pv^m—, Vv = x»Pv - x'P1*, (4.7) 
CLT 

respectively and formally introduce 

(jr+ 
P+ = m L"+ = -L+>*=xf*P+ -x+P1*, (4.8) 

or 
with x+ as shown in eqs. (3.2). Then it can be verified that 

D p p2 p2 
Cr = —V"', £"+ = - L " + , £»-=-— P", £+- = _ _ p + . 

m m m m 
(4.9) 

In the second case, we take P as (5 = R. In the corresponding Beltrami 
coordinate system, the equation of £ n V is still of the form (4.6), only 
that r is no longer an affine parameter. However, with the momentum and 
angular momentum still defined as in (4.7), they are conserved quantities, 
and there will be 

M M r V 4 

mR m 

^ 5 = T ^ ^ c T ( x ) t ^ ( ^ ) P ^ , (4.11) 

C46 = TIb7^=^kPv. (4.12) 
y/c{x) mR 

In the above, =F is opposite to the sign of £4. If the normal vector of V is 
spacelike, the results are similar to the above. 

5. Conclusion 

From the null cone M C M2'4, we can construct the Mink-space, dSA and 
AdS on which the induced action of 0(2,4) is conformal. When M2'4 is 
viewed as the homogeneous space of RP 5 , [Af] := N/ ~ is the conformal 
(extension of the) Mink-, dS- or AdS-spa.ce. Various metrics can be en
dowed on [A/], differing from one another by Weyl transformations. For a 
given metric among them, the 0(2,4) transformations induce conformal 

http://AdS-spa.ce
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transformations on [A/]. Since [N], the Mink-, dS- and AdS-spaces are re
lated by conformal maps, a CFT in one space results in a CFT in each of 
other spaces. Therefore the AdS/CFT correspondence could be extended 
to all these spaces. The same idea can be generalized to higher dimensions. 

We have shown some evidence that the role of Beltrami coordinates on 
dS/AdS-sp&ces is similar to that of the Mink- coordinates. In fact, in the 
study of kinematics and dynamics on dS / AdS-spaces4'5, it is also revealed. 
The similarity is so strong that special relativity can be appealed for on 
dS/AdS-spaces4'5. 
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We make some observations on the Gopakumar-Vafa invariants of the local 
Calabi-Yau geometries given by the canonical line bundles of the projective 
plane and the product of two projective lines. We conjecture some closed for
mulas. 

Denote by Fx the generating series of Gromov-Witten invariants of 
a Calabi-Yau 3-fold X. In general such invariants are rational numbers. 
However, based on M-theory considerations, Gopakumar and Vafa [3] made 
a remarkable conjecture on the structure of Fx, in particular, its integral 
properties. More precisely, there are integers n9^ such that 

*>= £ EE^K2s inT )29'2gfcE-
£efl"2(X)-{o} g>o fc>i 

Recently there have been some progress in the calculations of Fx in the 
case of local Calabi-Yau geometries, both in the physics literature [2, 4, 
1] and in the mathematics literature [7, 6]. In particular, the Gopakumar-
Vafa invariants nd for the local P2 geometry have been calculated in [2] for 
0 < g < 55, 1 < d < 12. Calculations for the in [2] the Gopakumar-Vafa 
invariants n9,d d, for the local P1 x P1 geometry have been calculated in 
[2] for 0 < g <8, 1 < dud2 < 6. 

For the reader's convenience, we reproduce their table of nd for 0 < g < 
28 and 1 < d < 9 below (Table 1). We will use their complete table for the 
results below. 

As noted in [5, 2], for a given degree d, nd vanishes for g(d) > (d—l)(d— 
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2)/2, and there are closed formulas for g close to g(d). Indeed, (d—l)(d—2)/2 
is the genus of a nondegenerate curve of degree d in P2 . One has in this 
case 

< W = ( ~ 1 ) ^ + 3 ) / 2 ( r f + l)(d + 2). (1) 

For d > 2, we have contributions from curves with one node (therefore 
9=9(d)-l): 

n**-1 = - ( - l ) < W ) / 2 ( f ) (d2 + d - 3). (2) 

Curves with two nodes start contributing at d > 3, and one finds: 

- ( d - l ) ( d 5 - 2 d 4 - 6 d 3 + 9d2 + 36). (3) 
. , W - a ( - 1 ) ^ + 3 ) 7 2 [ 

For d > 4, curves with three nodes contribute to the Gopakumar-Vafa 
integral invariant: 

n9(d)-3 = _ ( - 1 ) / _ 9 6 + 222d - 323d2 + 54d3 

a 12 (4) 
- 34d4 + 36d5 + 2d6 - 6d7 + d8). 

One expects closed formulas for n^ ' m for m > 3 and large enough d. 
Such formulas will be very complicated because the degree in d increases 
very fast. It is not easy to guess their form. 

In the original derivation of the Gopakumar-Vafa conjecture, nf. were 
obtained from some integers N%, as follows: 

5>i!(-l)9(94 -q-^f9 = 5>£fl9(<z), (5) 
ff>0 3>0 

where Rg(q) = q9 + q9~2 -\ \-q~9- One can also obtain iV| from nf, from 
the following formula: 

(9* - ?"*)* = E(-2)9_fc (t) E (J) («*-»(*) - Rk-2i-2{q)) 
fe=0 ^ ' i=0 ^ ' 

= Rg{q) - 2gRg-1{q) + {2g2 - g - l)Rg-2(q) + • • • , 
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where R-i{q) = 0. Indeed, we have 

(qi - q-if> = (q + 9- i - 2)» = ^(-2)^"fe (j?) (q + g"1)fe 

fc=o ^ ' 

fe=0 v 7 i=0 v ' 

\ — \ 

fc=0 \ / i=0 ^ ^ 

In particular, if <?(E) is the largest g such that n^ ^ 0, then we have 

N9f?) = (_1)fl(E)nfl(E)> ( 6 ) 

^a(E)-i = ( _ 1 ) f l ( s ) - i ( 2 5 ( E ) . „|<=> + nf .^)-1) , (7) 

AT|(E>-2 = ( - 1 ) ^ ) ( ( 2 5 ( E ) 2 - 5 ( E ) - l)„fp> 

+ 2 ( f f ( E ) - l ) n f , C E ) - 1 + n | ( E ) - 2 ) . (8) 

In this note we will show that for the local P2 case and the local P1 x P1 

case, N9 are much smaller and have some nice properties. For fixed m we 
observe some nice stable progression behavior of N% for large enough 
d. This leads to some simple closed formulas for them. 

Starting from the following table in [2], we get a table for N% in the 
next two pages: 
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Table 1. Table for n9
d in the local P2 case 

g 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

d= 1 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
-6 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3 
27 
-10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4 
-192 
231 
-102 
15 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

5 
1695 
-4452 
5430 -
-3672 
1386 
-270 
21 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

6 
17064 
80948 
194022 
290853 
-290400 
196857 
-90390 
27538 
-5310 
585 
-28 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

7 
188454 

-1438086 
5784837 

-15363990 
29056614 
-40492272 
42297741 
-33388020 
19956294 
- 9001908 
3035271 
-751218 
132201 
-15636 
1113 
-36 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

8 
-2228160 
25301295 

-155322234 
649358826 

-2003386626 
4741754985 
-8802201084 
12991744968 
-15382690248 
14696175789 
-11368277886 
7130565654 
-3624105918 
1487970738 
-490564242 
128595720 
-26398788 
4146627 
-480636 
38703 
-1932 

45 
0 
0 
0 
0 
0 
0 
0 

9 
27748899 

-443384578 
3894455457 

-23769907110 
109496290149 
-396521732268 
1156156082181 
-2756768768616 
5434042220973 
-8925467876838 
12289618988434 
-14251504205448 
13968129299517 
-11600960414160 
8178041540439 
-4896802729542 
2489687953666 
-1073258752968 
391168899747 
-120003463932 
30788199027 
-6546191256 
1138978170 
-159318126 
17465232 
-1444132 

84636 
-3132 

55 
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Table 2: Table of VVf in the local P2 case 
g 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

d= 1 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
-6 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3 
7 
10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4 
-30 
-33 
-12 
-15 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

5 
114 
150 
129 
96 
51 
18 
21 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

6 
-550 
-853 
-900 
-733 
-580 
-360 
-258 
-138 
-72 
-25 
-28 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

7 
3255 
5466 
6360 
6168 
5268 
4200 
3171 
2244 
1476 
996 
591 
354 
186 
96 
33 
36 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

8 
-22134 
-39372 
-49098 
-51882 
-48846 
-43116 
-35778 
-28584 
-21678 
-16278 
-11568 
-8151 
-5412 
-3600 
-2214 
-1440 
-780 
-462 
-240 
-123 
-42 
-45 
0 
0 
0 
0 
0 
0 
0 

9 
169750 
311974 
408924 
456622 
461509 
434934 
389385 
334482 
277812 
224334 
176964 
136008 
102545 
75536 
54666 
38606 
26921 
18072 
12061 
7756 
4950 
2992 
1840 
990 
582 
300 
153 
52 
55 

10 
-1431438 
-2686038 
-3639474 
-4234206 
-4485894 
-448091 
-4201602 
-3815196 
-3360462 
-2881647 
-2418726 
-1987920 
-1607280 
-1275786 
-999060 
-769119 
-584772 
-436692 
-322800 
-233910 
-168024 
-118191 
-82302 
-55851 
-37836 
-24648 
-16110 
-10110 
-6372 
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Table 2 (continued): Table of iVj in the local P2 case 

g 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

d= 10 
-1431438 
-2686038 
-3639474 
-4234206 
-4485894 
-448091 
-4201602 
-3815196 
-3360462 
-2881647 
-2418726 
-1987920 
-1607280 
-1275786 
-999060 
-769119 
-584772 
-436692 
-322800 
-233910 
-168024 
-118191 
-82302 
-55851 
-37836 
-24648 
-16110 
-10110 
-6372 
-3729 

-2280 
-1221 
- 714 
-366 
- 186 
-63 
- 66 

11 
13025349 
24811068 
34387656 
41210598 
45176136 
46535634 
45746832 
43350270 
39875763 
35788092 
31451790 
27144348 
23051883 
19295790 
15936894 
13002726 
10481811 
8356338 
6587454 
5139042 
3965148 
3029214 
2287590 
1710720 
1264503 
925350 
668541 
478680 
337560 
235890 
235890 
110382 
73632 
48894 
31449 
20226 
12591 

12 
-126303034 
-243104587 
-342509526 
-419389857 
-471633948 
-499923081 
-506850510 
-496239528 
-472228668 
-438935008 
-399896002 
-358135605 
-315914892 
-274989672 
-236467548 
-201130777 
-201130777 
-141171750 
-116621626 
-95518501 
-77556222 
-62468462 
-49894916 
-39545082 
-31083092 
-24249023 
-18758088 
-14403727 
-10964512 
-8284122 
-6201922 
-4609204 
-3391380 
-2477128 
-1789948 
-1283697 
-909502 

g 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

d= 11 
7776 
4533 
2760 
1473 
858 
858 
222 
75 
78 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

12 
-639925 
-443502 
-305558 
-207008 
-139293 
-91742 
-60365 
-38430 
-24571 
-15100 
-9297 
-5404 
-3280 
-1746 
-1014 
-516 
-261 
-88 
-91 

Our first observation is that for fixed d, N% have the same sign for 

0 < g < g{d). This unexpected phenomenon might have an interpretation 

from the M-theory point of view. Secondly, for a positive integer d and a 

nonnegative integer m, set Mf = (-I)*-1 N9
d

{d)~m, then M% is quadratic 
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in d for large d. Indeed we have the following table for M™: 

m 
0 
1 
2 
3 
4 
5 
6 
7 
8 

Table 3: 
d= 1 2 3 4 

3 6 10 15 
7 12 

33 
30 

Table of Mf in the local P2 case 

5 6 
21 28 
18 25 
51 72 
96 138 
129 258 
150 360 
114 580 

733 
900 

7 8 9 
36 45 55 
33 42 52 
96 123 153 
186 240 300 
354 462 582 
591 780 990 
996 1440 1840 
1476 2214 2992 
2244 3600 4950 

10 
66 
63 
186 
366 
714 
1221 
2280 
3729 
6372 

11 
78 
75 
222 
438 
858 
1473 
2760 
4533 
7776 

12 
91 
88 
261 
516 
1014 
1746 
3280 
5404 
9297 

Prom this table one can verify the following formulas: 

„ _ (rf + l)(d + 2) <P + 3d + 2 
"i 2 = 2 ' < 9 ) 

„ i_fi±iffi±«_,_£±M^ i (da8) (10) 

Mj = 5<^±|t5), (d>4) (11) 
M\ = 3(d2 + 3d), ( d > 5 ) (12) 

M,f = 6(d2 + 3 d - l l ) , ( d > 6 ) (13) 

Mb
d = ^-{d2 + 3d)-\U, ( d > 7 ) (14) 

M^ = 20(d2 + 3 d - 1 6 ) , (d > 8) (15) 

Ml = y ( d 2 + 3d ) -626 , ( d > 9 ) (16) 

117 
Ml = ~(d2+3d)-1233, ( d > 1 0 ) . (17) 

We expect in general M™ has the following form for d > m + 2: 

M?=°^{d2 + 3d)-b{m), 

where a(m),b(m) are positive integers (except for 6(5) = 0). It is easy to 
see that (9) - (11) match with (1) - (3) by (6)-(8). One can also convert 
(12) -(17) to closed formulas for n9

d
{d)~m for 4 < m < 8. We leave that to 

the interested reader. 
We observe similar behavior in the local P1 x P1 case. We reformulate 

the table in [2] below. 
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g 
0 

Table 4: n9
{did2) in the local P1 x P1 case 

(di,d2) = (l,0) (2,0) (3,0) (4,0) (5,0) 
- 2 0 0 0 0 

(6,0) 
0 

era
 

0 
(di,d2) = (l,l) (2,1) (3,1) (4,1) (5,1) (6,1) 

-4 -6 -8 -10 -12 -14 

g 
0 
1 
2 
3 
4 
5 

(d1,d2) = (2,2) 
-32 
9 
0 
0 
0 
0 

(3,2) 
-110 
68 

- 12 
0 
0 
0 

(4,2) 
-288 
300 
-116 
15 
0 
0 

(5,2) 
-644 
988 
-628 
176 
-18 
0 

(6,2) 
- 1280 
2698 
-2488 
1130 
-248 
21 

g 
0 
1 
2 
3 
4 
5 
6 
7 
8 

(di,d2) = (3,3) 
-756 
1016 
-580 
156 
-16 
0 
0 
0 
0 

(4,3) 
-3556 
7792 

-8042 
4680 
-1560 
276 
-20 
0 
0 

(5,3) 
-13072 
41376 
-64624 
60840 
-36408 
13888 
-3260 
428 
-24 

(6,3) 
-40338 
172124 

-371980 
501440 
-450438 
276144 
-115744 
32568 
-5872 

(In the table in [2], n l 3N = 36048. But this value does not seem to fit when 
one considers N?d d^.) 

The following are noted in [2]. For a given bidegree (a, b), n9, b-. vanishes 
for g > g(a, b) = (a — l)(b — 1), which is indeed the arithmetic genus of a 
curve of bidegree (a, b) in P1 x P1. One finds, 

ng(a,b) 
\a,b) 

= -(- l ) (°+ 1 ) ( 6+l)( a + l)(ft + l ) . (18) 

" S ? " 1 = 2 ( - l ) ( a + 1 ) ( b + 1 ) ( a + b + ab - a2 - b2 + a2b2), (19) 

n (S) 6 ) ~ 2 = - ( - l ) ( a + 1 ) ( 6 + 1 ) ( - 1 4 + 9(o + b) - 3ab - 3(a2 + b2) + 3a2&2 

+2(a3 + 63 + a2b + b2a) - 2(a3b + b3a) - 2(a3b2 + b3a2) 

+2a3b3). (20) 

For example, 
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Table 5 
(a, b) 

„9(a,b) 
U(a,b) 

o(a,(0-l 
n(a,b) 
ng(a<b)-2 
n(a,b) 

(6,3) 

-28 

612 

-5872 

(4,4) 

25 

-496 

4266 

(5,4) 

-30 

776 

-8982 

(6,4) 

35 

-1116 

16248 

(7,4) 

-40 

1516 

-26604 

(8,4) 

45 

-1976 

40590 

(9,4) 

-50 

2496 

-58746 

We again expect closed formulas for W?„M in the stable range, and 
since the degree in (a, b) increase very fast, such formulas are expected to 
be complicated. We again convert the above table to a table for N9: 

Table 6: Table of Nf. A , in the local P1 x P1 case 

g 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

(2,2) 
-14 
-9 
0 
0 
0 
0 
0 
0 
0 
0 
0 

(3,2) 
42 
20 
12 
0 
0 
0 
0 
0 
0 
0 
0 

(4,2) 
-58 
-46 
-26 
-15 
0 
0 
0 
0 
0 
0 
0 

(5,2) 
100 
76 
58 
32 
18 
0 
0 
0 
0 
0 
0 

(6,2) 
-148 
-127 
-94 
-70 
-38 
-21 
0 
0 
0 
0 
0 

(3,3) 
112 
112 
76 
28 
16 
0 
0 
0 
0 
0 
0 

(4,3) 
330 
364 
302 
184 
100 
36 
20 
0 
0 
0 
0 

(5,3) 
788 
984 
908 
656 
428 
232 
124 
44 
24 
0 
0 

(6,3) 
1674 
2292 
2262 
1824 
1354 
860 
524 
280 
148 
52 
28 

We also have the following table from Table 5: 

Table 7 
(a,b) 

N9(ab} 

(a,b) 
wo(a,6)-l 

(a,b) 
Ng{a,b)-2 

(a,b) 

(4,4) 

-25 

-46 

-130 

(5,4) 

30 

56 

160 

(6,4) 

-35 

-66 

-190 

(7,4) 

40 

76 

220 

(8,4) 

-45 

-86 

-250 

(9,4) 

50 

96 

280 

We note for g < g(a, b), (—l)°(a,6)7V? fc) are all positive. Furthermore, if 

one set M(™6) = (-i)fl(«.*>N*£M-m, then one can verify that 

M?a,6) = (o+l)(& + l), a>b>l, (21) 

M(
1
ajb) = 2(a+l)(6+l)-4, a>b>2, (22) 

M(a,b) =6(o+l)(6 + 1 ) - 20. a >6>3. (23) 
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We also notice that 

M(
2

0i2) = 12a - 2, a > 4 , 

M (
2

a 3 ) =24a + 4, a > 3 . 

It is not hard to see that (21) - (23) are equivalent to (18)-(20). We 
conjecture that for a > b > m + 1, one has 

M^b)=x(m)(a + l)(b + l)-y(m) 

for some positive integers x(m) and y{m) (except for y(0) = 0), and for any 
fixed m and b, when a is large enough, 

MJ2,b) = u ( m > b ) a + u ( m > b ) 

for some integers u(m,b) and v(m,b). We also conjecture that similar 
quadratic growth behavior of N9 hold for other local Calabi-Yau geome
tries. It is interesting to see if the arguments in [5] can be used to give an 
explanation of such phenomenon. 
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exciting areas. Besides the plenary talks, the coverage includes: 

models and related topics in statistical physics; quantum fields, 
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field theory; development of integrable systems; and random 
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